refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 21 results
Sort by

Filters

Technology

Platform

accession-icon GSE99358
The role of FAM46C in myeloma cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20), Illumina HiSeq 2000

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Loss of <i>FAM46C</i> Promotes Cell Survival in Myeloma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE99357
The role of FAM46C in myeloma cells [array]
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

FAM46C is one of the most recurrently mutated genes in multiple myeloma (MM), however its role in disease pathogenesis is not determined. Here we demonstrate that wild type (WT) FAM46C overexpression induces substantial cytotoxicity in MM cells. In contrast, FAM46C mutations found in MM patients abrogate this cytotoxicity indicating a MM survival advantage conferred by the FAM46C mutant phenotype. WT FAM46C overexpression downregulated IRF4, CEBPB, MYC and upregulated immunoglobulin (Ig) light chain and HSPA5/BIP. Furthermore, pathway analysis suggests that enforced FAM46C expression activates the unfolded protein response (UPR) pathway and induces mitochondrial dysfunction. In contrast, endogenous CRISPR FAM46C depletion enhanced MM cell growth and notably decreasing Ig light chain and BIP expression, activating of ERK and anti-apoptotic signaling and conferring relative resistance to dexamethasone and lenalidomide treatment. The genes altered in FAM46C depleted cells are enriched for signaling pathways regulating estrogen, glucocorticoid, B cell receptor signaling and ATM signaling. Together these results implicate FAM46C in myeloma cell growth and survival. FAM46C mutation contributes to myeloma pathogenesis and disease progression by perturbation in plasma cell differentiation and endoplasmic reticulum homeostasis.

Publication Title

Loss of <i>FAM46C</i> Promotes Cell Survival in Myeloma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE45205
Effects of miR-106a~363 blocking sponge on Sk-ES-1 Ewing Sarcoma Cell line Gene Expression Profile
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

The objective of this study was to determine the effects of miR-106a~363 blockade on the gene expression profile of Ewing Sarcoma cell lines (Sk-ES-1 cells)

Publication Title

Growth-promoting role of the miR-106a~363 cluster in Ewing sarcoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE94619
The histone demethylase KDM3A, and its downstream target MCAM, promote Ewing Sarcoma cell migration and metastasis
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Ewing Sarcoma is the second most common solid pediatric malignant neoplasm of the bone and soft tissue. Driven by EWS/Ets, or rarely variant, oncogenic fusions, Ewing Sarcoma is a biologically and clinically aggressive disease with a high propensity for metastasis. Our laboratory has previously identified the Jumonji-domain H3K9 me 1/2 histone demethylase KDM3A as a novel oncogene downstream of EWS/Fli1, the most common oncofusion in Ewing Sarcoma. Herein, we uncover a role for KDM3A in the promotion of Ewing Sarcoma metastasis.

Publication Title

The histone demethylase KDM3A, and its downstream target MCAM, promote Ewing Sarcoma cell migration and metastasis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE42708
Effect of Spot14 Overexpression on Gene Expression Profile of MMTV-Neu Mouse Tumors
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

The objective of this study was to determine the effect of Thyroid Hormone Responsive Protein Spot14 (Spot14) overexpression on the gene expression profiles of tumors from MMTV-Neu mice. Hemizygous MMTV-Neu and MMTV-Spot14 mice were bred and 1 cm tumors from Neu control or Neu/Spot14 bitransgenic offspring were profiled using Affymetrix gene arrays. Tumors from Neu/Spot14 mice emerged significantly earlier than controls, but expressed many genes associated with lactogenic differentiation and were not highly metastatic. These results from the mouse model are consistent with observations from primary human breast tumors, which indicate that high Spot14 gene expression was directly correlated with a luminal subtype and a positive ER status. Overexpression of Spot14 in cultured mammary epithelial cells stimulated proliferation but not differentiation. Together, these data suggest that, in vivo, Spot14 is expressed in well-differentiated cells, and promotes the expansion of this population in the context of oncogenic signaling pathway activation.

Publication Title

Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55886
Effect of Spot14 Loss on Gene Expression Profile of MMTV-PyMT Mouse Tumors
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

The objective of this study was to determine the effect of Thyroid Hormone Responsive Protein Spot14 (Spot14) loss on the gene expression profiles of tumors from MMTV-Polyomavirus middle-T antigen (PyMT) mice. MMTV-PyMT/S14-heterozygous mice were crossed with S14-heterozygous mice and 1 cm tumors from MMTV-PyMT control (wild-type S14) or MMTV-PyMT/S14-null offspring were profiled using Affymetrix gene arrays. Tumor latency was not different between groups; however, tumors lacking S14 grew significantly slower than control tumors. Loss of S14 also decreased the levels of de novo synthesized fatty acids in mammary tumors. In additional studies, performed on MMTV-Neu mice, we found that S14 overexpression was associated with increased tumor cell proliferation and elevated levels of tumor fatty acids. Gene expression profiling revealed that S14 loss and overexpression in mouse mammary tumors altered pathways associated with proliferation and metabolism. This study provides important information about the role of S14 in mammary tumorigenesis and tumor metabolism.

Publication Title

Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4324
Sex Differences in Response to Plasmodium chabaudi Infection: Involvement of Gonadal Steroids
  • organism-icon Mus musculus
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The goal of this study was to examine whether immune responses to Plasmodium chabaudi infection differ between the sexes and are altered by the presence of gonadal steroids. Gonadally-intact males were more likely than intact females to die following P. chabaudi infection, exhibit slower recovery from infection-associated weight loss, hypothermia, and anemia, have reduced IFN-associated gene expression and IFN production during peak parasitemia, and produce less antibody during the recovery phase of infection. Gonadectomy of male and female mice altered these sex-associated differences, suggesting that sex steroid hormone, in particular androgens and estrogens, may modulate immune responses to infection.

Publication Title

Involvement of gonadal steroids and gamma interferon in sex differences in response to blood-stage malaria infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20715
Transcript analysis in response to ozone in mice deficient in TLR4
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

We previously identified toll-like receptor 4 (Tlr4) as a candidate gene responsible for ozone (O3)-induced pulmonary hyperpermeability and inflammation. The objective of this study was to determine the mechanism through which TLR4 modulates O3-induced pulmonary responses and to utilize transcriptomics to determine TLR4 effector molecules. C3H/HeJ (HeJ; Tlr4 mutant) and C3H/HeOuJ (OuJ; Tlr4 normal), mice were exposed continuously to 0.3 ppm O3 or filtered air for 6, 24, 48 or 72 hr. Affymetrix Mouse430A_MOE gene arrays were used to analyze lung homogenates from HeJ and OuJ mice followed using a bioinformatic analysis. Inflammation was assessed by bronchoalveolar lavage and molecular analysis by ELISA, immunoblotting, and transcription factor activity. TLR4 signals through both the MYD88-dependent and independent pathways in OuJ mice, which involves MAP kinase activation, NF-kappaB, AP-1, and KC. Microarray analyses identifiedTLR4 responsive genes for strain and time in OuJ versus HeJ mice (p<0.05). One significantly upregulated cluster of genes in OuJ were the heat shock proteins (Hspa1b; Hsp70), Hsp90ab1). Furthermore, O3-induced expression of HSP70 protein was increased in OuJ compared to HeJ mice following 24-48 h O3. Moreover, BAL polymorphonuclear leukocytes (PMN) and total protein were significantly reduced in response to O3 in Hspa1a/Hspa1btm1Dix (Hsp70-/-) compared to Hsp70+/+ mice (p<0.05). TLR4 signaling (MYD88-dependent), ERK1/2, AP-1 activity, and KC protein content were also significantly reduced after O3 exposure in Hsp70-/- compared to Hsp70+/+ mice (p<0.05). These studies suggest that HSP70 is involved in the regulation of O3-induced lung inflammation through the TLR4 pathway and provide evidence that HSP70 is an endogenous in vivo TLR4 ligand.

Publication Title

Identification of candidate genes downstream of TLR4 signaling after ozone exposure in mice: a role for heat-shock protein 70.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE23215
Microarray analysis of Wolbachia infected Anopheles gambiae Sua5B cells
  • organism-icon Anopheles gambiae
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Plasmodium/Anopheles Genome Array (plasmodiumanopheles)

Description

Wolbachia, an endosymbiotic bacterium, is being investigated as a vector control agent in several insect species. Along with the well known classical reproductive parasitism Wolbachia employs against its host to spread within the population, it is emerging that the bacteria can protect the host against pathogens and reduced pathogen transmission. Anopheles mosquitoes, which transmit malaria, have never been found to harbour Wolbachia in nature, and despite numerous transinfection attempts, no stable line has been developed.

Publication Title

Wolbachia infections in Anopheles gambiae cells: transcriptomic characterization of a novel host-symbiont interaction.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35314
Expression data from Control and Six1 expressing MCF7 derived xenograft tumors
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

Although an important association between lymph node metastasis and poor prognosis in breast cancer was observed decades ago, an active role for the lymphatic system in metastatic dissemination has only recently been examined. We demonstrate that the Six1 homeoprotein promotes peri- and intra-tumoral lymphangiogenesis, lymphatic invasion, and distant metastasis of breast cancer cells. We identify the pro-lymphangiogenic factor, VEGF-C, as required for this process, and demonstrate transcriptional induction as the mechanism of regulation of VEGF-C expression by Six1. Using a different, but complementary animal model, we show that while required, VEGF-C is not sufficient for the pro-metastatic effects of Six1. Verifying the clinical significance of this pro-metastatic Six1-VEGF-C axis, we demonstrate co-expression of Six1 and VEGF-C in human breast cancer.

Publication Title

SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact