refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE30159
Gene expression analysis of bone biospies from nine patients with endogenous Cushings syndrome before and after treatment
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Glucose intolerance and diabetes mellitus are classical parts of endogenous Cushings syndrome (CS), and insulin resistance is a feature of cortisol excess. CS patients display characteristics including hyperglycemia, abdominal obesity, reduced high-density lipoprotein cholesterol levels and elevated triglycerides, and arterial hypertension. Hypercortisolism is a well known cause of bone loss, and patients with CS frequently display low bone mass and fragility fractures. Cortisol excess inhibits bone formation, increases bone resorption, impairs calcium absorption from the gut, and affects the secretion of several hormones, cytokines, and growth factors with potential influence on bone metabolism. Bone biopsies from nine CS patients, before and mean 3 months after surgery, were screened for expressional candidate genes using Affymetrix human Gene Plus 2.0 Arrays. Analyses were performed to identify genes in glucocorticoid-induced osteoporosis and genes in glucose metabolism and energy homeostasis.

Publication Title

The glucocorticoid-induced leucine zipper gene (GILZ) expression decreases after successful treatment of patients with endogenous Cushing's syndrome and may play a role in glucocorticoid-induced osteoporosis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP090091
Comprehensive RNA sequencing of healthy human endometrium at two time points of the menstrual cycle
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

mRNA, sncRNA and lncRNA show a clear difference in expression between proliferative phase and 7–9 days after ovulation, thorough described together with lncRNA, snoRNA and snRNA not previously reported in healthy human endometrium Overall design: 7 small RNA and 7 total RNA samples sequenced from endmometrial tissue from two time points of the menstrual cycle. Gene expression from the two time points compared. Additionally 12 small RNA from stromal cells was sequenced.

Publication Title

Comprehensive RNA sequencing of healthy human endometrium at two time points of the menstrual cycle.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9538
Identification of Transcriptional Targets Dual Functions Transcription Factor/Phosphatase Eyes Absent
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Drosophila eye specification an development relies on a collection of transcription factors termed the retinal determination gene network (RDGN). Two members of this network, Eyes absent (EYA) and Sine oculis (SO), form a transcriptional complex in which EYA provides the transactivation function while SO provides the DNA binding activity. EYA also function as a protein tyrosine phosphatase, raising the question of whether transcriptional output is dependent or independent of phosphatase activity. To explore this, we used microarrays together with binding site analysis, quantitative real-time PCR, chromatin immunoprecipitation, genetics, and in vivo expression analysis to identify new EYA-SO targets. In parallel, we examined the expression profiles of tissue expressing phosphatase mutant eya and found that reducing phosphatase activity did not globally impair transcriptional output. Among the targets identified by our analysis was the cell cycle regulatory gene, string (stg), suggesting that EYA and SO may influence cell proliferation through transcriptional regulation of stg. Future investigation into the regulation of stg and other EYA-SO targets identified in this study will help elucidate the transcriptional circuitries whereby output from the RDGN integrates with other signaling inputs to coordinate retinal development.

Publication Title

Identification of transcriptional targets of the dual-function transcription factor/phosphatase eyes absent.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP083073
Roquin suppresses PI3K-mTOR signaling to control T cell differentiation and Treg effector function
  • organism-icon Mus musculus
  • sample-icon 115 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina HiSeq 1500

Description

Roquin proteins are required to preclude spontaneous T cell activation and aberrant T follicular helper (Tfh) or T helper 17 (Th17) differentiation. Here, we show that deletion of Roquin encoding alleles in regulatory T cells (Tregs) also caused the activation of conventional T cells. These Tregs exhibited a follicular Treg phenotype, CD25 downregulation and could not protect from colitis. Mechanistically, Roquin was required for full expression and activity of Pten and Foxo1, two essential signaling molecules in Tregs and effector T cells. Roquin upregulated Pten by interfering with miR-17~92 binding to an overlapping cis-element in the Pten 3' UTR and downregulated the Foxo1-specific E3 ubiquitin ligase Itch. Loss of Roquin enhanced mTOR signaling and global protein synthesis, while inhibition of PI3K or mTOR in Roquin-deficient CD4+ T cells corrected increased Tfh and Th17 differentiation. Thereby, the control of PI3K-mTOR signaling by Roquin prevents autoimmunity through T cell-intrinsic and Treg-mediated regulation. Overall design: Examination of transcriptome and ribosome occupancy in MEF and T cells upon Roquin expression and inhibition. Examination of Roquin binding sites in the mouse transcriptome of MEF cells. Examination of transcriptome in CD25+ and CD25- Treg cells from WT and Roquin DKO mice.

Publication Title

Roquin targets mRNAs in a 3'-UTR-specific manner by different modes of regulation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact