refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 85 results
Sort by

Filters

Technology

Platform

accession-icon GSE51021
DKK1 expression is down-regulated in the lymph node pre-metastatic niche in esophageal cancer
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Lymph node metastasis is a poor prognosis indicator in esophageal cancer. Although tumor spreading currently forms the main basis for therapy selection, the molecular mechanisms underlying the metastatic pathway remain insufficiently understood. Several studies aimed to investigate these mechanisms but focused mainly on regulatory patterns in the tumors themselves and/or the invaded lymph nodes. To date no study has yet investigated the potential changes on transcription level, which take place within the yet non-invaded niche. Here we provide a comprehensive description of these regulations in patients. In this study the transcriptomic profiles of regional lymph nodes were determined for two patient groups: patients classified as pN1 (metastasis) or pN0 (no metastasis) respectively. All investigated lymph nodes, also those from pN1 patients, were still free of metastasis. The gene expression data was obtained via microarray analysis. Top candidates were validated via PCR and immunohistochemistry. The results show that regional lymph nodes of pN1 patients differ decisively from those of pN0 patients even before metastasis has taken place. In the pN0 group distinct immune response patterns were observed. In contrast, lymph nodes of the pN1 group exhibited a clear profile of reduced immune response and reduced proliferation, but increased apoptosis, enhanced hypoplasia and morphological conversion processes. DKK1 was the most significant gene associated with the molecular mechanisms taking place in lymph nodes of patients suffering from metastasis (pN1). We assume that the two molecular profiles observed constitute two different stages of a progressive disease. Finally we suggest that DKK1 might play an important role within the mechanisms leading to lymph node metastasis.

Publication Title

Molecular changes in pre-metastatic lymph nodes of esophageal cancer patients.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE61299
Sharpin controls differentiation and cytokine production of mesenchymal bone marrow cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The cytosolic protein Sharpin is as a component of the linear ubiquitin chain assembly complex (LUBAC), which regulates NF-B signaling in response to specific ligands. Its inactivating mutation in Cpdm (chronic proliferative dermatitis mutation) mice causes multi-organ inflammation, yet this phenotype is not transferable into wildtype mice by hematopoietic stem cell transfer. Recent evidence demonstrated that Cpdm mice additionally display low bone mass, but the cellular and molecular causes of this phenotype remained to be established. Here we have applied non-decalcified histology together with cellular and dynamic histomorphometry to perform a thorough skeletal phenotyping of Cpdm mice. We show that Cpdm mice display trabecular and cortical osteopenia, solely explained by impaired bone formation, whereas osteoclastogenesis is unaffected. We additionally found that Cpdm mice display a severe disturbance of articular cartilage integrity in the absence of joint inflammation, supporting the concept that Sharpin-deficiency affects mesenchymal cell differentiation. Consistently, Cpdm mesenchymal cells displayed reduced osteogenic capacitiy ex vivo, yet this defect was not associated with impaired NF-B signaling. A molecular comparison of wildtype and Cpdm bone marrow cell populations further revealed that Cpdm mesenchymal cells produce higher levels of Cxcl5 and lower levels of IL1ra. Collectively, our data demonstrate that skeletal defects of Cpdm mice are not caused by chronic inflammation, but that Sharpin is as a critical regulator of mesenchymal cell differentiation and gene expression. They additionally provide an alternative molecular explanation for the inflammatory phenotype of Cpdm mice and the absence of disease transfer by hematopoetic stem cell transplantation.

Publication Title

Sharpin Controls Osteogenic Differentiation of Mesenchymal Bone Marrow Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP043035
IL-17A induces inhibition of OB function
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We report that IL-17A has an inhibitory effect on osteoblastogenesis. Overall design: Pre-osteoblasts were treated with vehicle or 50ng/ml IL-17A for 7 days.

Publication Title

Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP171162
Single-cell RNA-seq of murine thymic Treg cell progenitors and mature Treg cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We use single-cell RNA-seq to determine distinct selection phenotypes of 2 rare thymic Treg cell progenitors as well as mature thymic Treg cells Overall design: A single cell suspension was generated from murine thymus then magnetically depleted for CD8/Ter119 before sorting CD25+Foxp3-, CD25-Foxp3lo and CD25+Foxp3+ cells from CD4+CD73- thymocytes on a BD Aria II. The 10x Genomic platform…

Publication Title

Thymic regulatory T cells arise via two distinct developmental programs.

Sample Metadata Fields

Age, Cell line, Subject

View Samples
accession-icon GSE11375
A Genomic Score Prognostic of Outcome in Trauma Patients
  • organism-icon Homo sapiens
  • sample-icon 182 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Physiological, anatomical, and clinical laboratory analytic scoring systems (APACHE, Injury Severity Score (ISS)) have been utilized, with limited success, to predict outcome following injury. We hypothesized that a peripheral blood leukocyte gene expression score could predict outcome, including multiple organ failure, following severe blunt trauma.

Publication Title

A genomic score prognostic of outcome in trauma patients.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE94691
Gene expression of ex vivo cultured osteoclasts during the course of differentiation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The aim of this analysis was to investigate the changes in the gene expression pattern of ex vivo cultured wildtype murine osteoclasts during the course of osteoclastogenic differentiation.

Publication Title

The Lysosomal Protein Arylsulfatase B Is a Key Enzyme Involved in Skeletal Turnover.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE60761
Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The hormone calcitonin (CT) is primarily known for its pharmacologic action as an inhibitor of bone resorption, yet CT-deficient mice display increased bone formation. These findings raised the question about the underlying cellular and molecular mechanism of CT action. Here we show that either ubiquitous or osteoclast-specific inactivation of the murine CT receptor (CTR) causes increased bone formation. CT negatively regulates the osteoclast expression of Spns2 gene, which encodes a transporter for the signaling lipid sphingosine 1-phosphate (S1P). CTR-deficient mice show increased S1P levels, and their skeletal phenotype is normalized by deletion of the S1P receptor S1P3. Finally, pharmacologic treatment with the non-selective S1P receptor agonist FTY720 causes increased bone formation in wildtype, but not in S1P3-deficient mice. This study redefines the role of CT in skeletal biology, confirms that S1P acts as an osteoanabolic molecule in vivo, and provides evidence for a pharmacologically exploitable crosstalk between osteoclasts and osteoblasts.

Publication Title

Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE36809
A genomic storm in critically injured humans
  • organism-icon Homo sapiens
  • sample-icon 856 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human survival from injury requires an appropriate inflammatory and immune response. We describe the circulating leukocyte transcriptome after severe trauma and show that the severe stress produce a global

Publication Title

A genomic storm in critically injured humans.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE37069
Gene response to major burn injuries
  • organism-icon Homo sapiens
  • sample-icon 587 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Blood was sampled from severe burns patients over time as well as healthy subjects. Genome-wide expression analyses were conducted using the Affymetrix U133 plus 2.0 GeneChip.

Publication Title

Genomic responses in mouse models poorly mimic human inflammatory diseases.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE19743
A large-scale clinical study of gene expression response to severe burn injury
  • organism-icon Homo sapiens
  • sample-icon 177 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To understand the age-dependent response to burn injury, blood samples from pediatric and adult patients were collected at different times after severe burn injury.

Publication Title

Analysis of factorial time-course microarrays with application to a clinical study of burn injury.

Sample Metadata Fields

Sex, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact