refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE31419
The epigenetic cell-cycle regulator HCF-1 is recruited to active CpG island-containing promoters together with the ZNF143, THAP11(Ronin), YY-1 and GABP transcription factors.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

HCFC1 is a common component of active human CpG-island promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription factor occupancy.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE31412
Expression changes in HeLa cells treated with siRNA against HCFC1 or control luciferase
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compared in triplicate mRNA levels from cells treated with siRNA against either HCF-1 or, as a negative control, luciferase. We observed that 19% of Refseq annotated genes are differentially expressed (either up or down regulated with a multiple testing corrected p value of 0.05) upon depletion of HCF-1. This large number of differentially expressed genes upon HCF-1 depletion demonstrates a broad role of HCF-1 in the regulation of gene expression.

Publication Title

HCFC1 is a common component of active human CpG-island promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription factor occupancy.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE44163
Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP018510
Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts [RNA-seq_siRNA_transfection]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

MicroRNAs (miRNAs) are critical to proliferation, differentiation, and development. Here, we characterize gene expression in murine Dicer-null adult mesenchymal stem cell lines, a fibroblast cell type. Loss of Dicer leads to de-repression of let-7 targets at levels that exceed 10-100 fold with increases in transcription. Direct and indirect targets of this miRNA belong to a mid-gestation embryonic program that encompasses known oncofetal genes as well as oncogenes not previously associated with an embryonic state. Surprisingly, this mid-gestation program represents a distinct period that occurs between the pluripotent state of the inner cell mass at embryonic day 3.5 and the induction of let-7, upon differentiation, at embryonic day 10.5. Within this mid-gestation program, we characterize the let-7 target Nr6a1, an embryonic transcriptional repressor that regulates gene expression in adult fibroblasts following miRNA loss. In total, let-7 is required for the continual suppression of embryonic gene expression in adult cells, a mechanism that may underlie its tumor suppressive function. Overall design: mRNAs from adult mesenchymal stem cells (immortalized monoclonal lines of murine MSCs) with and without Dicer (WT: Dicer f/f, KO: Dicer -/-), were analyzed. WT and KO cells were transfected with a nontargeting control siRNA. KO cells were separately transfected with a synthetic let-7g siRNA duplex, or an siRNA targeting Nr6a1.

Publication Title

Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE44162
Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts [3p arrays]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

MicroRNAs (miRNAs) are critical to proliferation, differentiation, and development. Here, we characterize gene expression in murine Dicer-null adult mesenchymal stem cell lines, a fibroblast cell type. Loss of Dicer leads to de-repression of let-7 targets at levels that exceed 10-100 fold with increases in transcription. Direct and indirect targets of this miRNA belong to a mid-gestation embryonic program that encompasses known oncofetal genes as well as oncogenes not previously associated with an embryonic state. Surprisingly, this mid-gestation program represents a distinct period that occurs between the pluripotent state of the inner cell mass at embryonic day 3.5 and the induction of let-7, upon differentiation, at embryonic day 10.5. Within this mid-gestation program, we characterize the let-7 target Nr6a1, an embryonic transcriptional repressor that regulates gene expression in adult fibroblasts following miRNA loss. In total, let-7 is required for the continual suppression of embryonic gene expression in adult cells, a mechanism that may underlie its tumor suppressive function.

Publication Title

Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP018511
Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts [mRNA-seq_Flag-HA-NR6A1_overexpr]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

MicroRNAs (miRNAs) are critical to proliferation, differentiation, and development. Here, we characterize gene expression in murine Dicer-null adult mesenchymal stem cell lines, a fibroblast cell type. Loss of Dicer leads to de-repression of let-7 targets at levels that exceed 10-100 fold with increases in transcription. Direct and indirect targets of this miRNA belong to a mid-gestation embryonic program that encompasses known oncofetal genes as well as oncogenes not previously associated with an embryonic state. Surprisingly, this mid-gestation program represents a distinct period that occurs between the pluripotent state of the inner cell mass at embryonic day 3.5 and the induction of let-7, upon differentiation, at embryonic day 10.5. Within this mid-gestation program, we characterize the let-7 target Nr6a1, an embryonic transcriptional repressor that regulates gene expression in adult fibroblasts following miRNA loss. In total, let-7 is required for the continual suppression of embryonic gene expression in adult cells, a mechanism that may underlie its tumor suppressive function. Overall design: mRNAs from Flag-HA-NR6A1-overexpressing Dicer wild-type adult mesenchymal stem cells (immortalized monoclonal lines of murine MSCs) and vector-only Dicer WT MSCs were analyzed.

Publication Title

Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP018509
Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts [small_RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

MicroRNAs (miRNAs) are critical to proliferation, differentiation, and development. Here, we characterize gene expression in murine Dicer-null adult mesenchymal stem cell lines, a fibroblast cell type. Loss of Dicer leads to de-repression of let-7 targets at levels that exceed 10-100 fold with increases in transcription. Direct and indirect targets of this miRNA belong to a mid-gestation embryonic program that encompasses known oncofetal genes as well as oncogenes not previously associated with an embryonic state. Surprisingly, this mid-gestation program represents a distinct period that occurs between the pluripotent state of the inner cell mass at embryonic day 3.5 and the induction of let-7, upon differentiation, at embryonic day 10.5. Within this mid-gestation program, we characterize the let-7 target Nr6a1, an embryonic transcriptional repressor that regulates gene expression in adult fibroblasts following miRNA loss. In total, let-7 is required for the continual suppression of embryonic gene expression in adult cells, a mechanism that may underlie its tumor suppressive function. Overall design: Small RNAs from adult mesenchymal stem cells (immortalized clonal lines of murine MSCs) with and without Dicer (Dicer f/f, Dicer -/-) were analyzed.

Publication Title

Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP046257
Dicer WT/KO MSC RNA-Seq [total RNA]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA-Seq performed on Dicer KO and WT murine mesenchymal stem cells from total RNA MicroRNAs (miRNAs) are small non-coding RNAs that regulates development and disease but induce only moderate repression of directs mRNA targets, suggesting that they coordinate with other modes ofs cellular regulation to effect large changes in gene expression. Ins this work we decouple direct effects of global miRNA loss froms transcriptional changes downstream in a pair of isogenic murines fibroblast cell lines with and without Dicer expression. Wes demonstrate how effects on direct miRNA targets are amplified bys transcription machinery through the construction of a network models that identifies specific transcription factors that cause changes ins mRNA expression upon Dicer loss. Through transcription factors over-expression, we delineate miRNA-mediated transcriptional programss and identify miRNA-mediated coherent and incoherent feed-forwards loops, suggesting a functional role of the interaction between miRNAss and transcription factors. In total, our results indicate thats miRNAs tightly control transcription factors within a denses interconnected network to modulate gene expression. Overall design: Total RNA was analyzed from adult mesenchymal stem cells (immortalized monoclonal lines of murine MSCs) with and without Dicer (WT: Dicer f/f, KO: Dicer -/-), as well as from WT cells transfected with an empty vector or a vector containing Tead4, Sox9 or Pbx3 transcripts.

Publication Title

Elucidating MicroRNA Regulatory Networks Using Transcriptional, Post-transcriptional, and Histone Modification Measurements.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact