refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE140448
Critical role for TRIM28 and HP1beta/gamma in the epigenetic control of T cell metabolic reprograming and effector differentiation
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Critical role for TRIM28 and HP1β/γ in the epigenetic control of T cell metabolic reprograming and effector differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE140443
Transcriptome analysis of WT and TRIM28 KO CD4 T cells, naïve or stimulated with anti-CD3 (plate-bound) and anti-CD28 (soluble) in Th0, Th1, Th2, Th17 or Treg conditions
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Critical role for TRIM28 and HP1b/g in the epigenetic control of T cell metabolic reprogramming and effector differentiation

Publication Title

Critical role for TRIM28 and HP1β/γ in the epigenetic control of T cell metabolic reprograming and effector differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE140444
Transcriptome analysis of naïve or stimulated WT and TRIM28 KO CD4 T cells (Affymetrix)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Critical role for TRIM28 and HP1b/g in the epigenetic control of T cell metabolic reprogramming and effector differentiation

Publication Title

Critical role for TRIM28 and HP1β/γ in the epigenetic control of T cell metabolic reprograming and effector differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE67060
Expression data of Wnt3a stimulated K562 cells after CXXC5 overexpression or knockdown
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

CXXC5 inhibits the canonical Wnt signaling pathway

Publication Title

Downregulation of the Wnt inhibitor CXXC5 predicts a better prognosis in acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP059912
Comparative analysis of drought-responsive transcriptome in soybean lines contrasting for canopy wilting
  • organism-icon Glycine max
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of abiotic stress molecular pathways. The goals of this study are to compare NGS-derived transcriptome profiling (RNA-seq) of contrasting slow wilting lines to quantify transcript abumdance under drought stress condition Overall design: Methods: The three biological replicates of DS line, Pana (control and drought samples) and DT line, PI 567690 (control and drought samples) leaf sample RNA were multiplexed and sequenced on an Illumina Hi-Seq 2000 platform. The RNA concentration of each sample was approximately 200ng/µl with a quantity of 50 µl.isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays

Publication Title

Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE34573
A Global View of the Oncogenic Landscape in Nasopharyngeal Carcinoma:An Integrated Analysis at the Genetic and Expression Levels
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Previous studies have reported that the tumour cells of nasopharyngeal carcinoma (NPC) exhibit both recurrent chromosome abnormalities and changes in the expression of numerous genes. However, it is not known to what extent changes in the copy number of individual genes are associated with the observed expression changes. To address this, a genome wide analysis of chromosome copy number and gene expression was performed in tumour cells micro-dissected from the same NPC biopsies. Significant gene expression changes were identified in tumour suppressor genes (TSGs) and in tumour-promoting genes (TPGs) but almost 60% of these can be either upregulated or downregulated in different types of cancer. This suggests that the simplistic classification of genes as TSGs or TPGs may not be entirely appropriate and that the concept of onco-suppressors may be more extensive than previously recognised. Several genomic regions showing frequent copy number gain or loss were identified. Whereas TSGs were significantly enriched within regions of frequent loss, no significant enrichment of TPGs was observed in regions of frequent gain. However, on a gene by gene basis little correlation was found between DNA copy number and alterations in gene expression except for loss of expression from homozygous deletions and a single highly amplified segment which showed enhanced gene expression.

Publication Title

A global view of the oncogenic landscape in nasopharyngeal carcinoma: an integrated analysis at the genetic and expression levels.

Sample Metadata Fields

Disease, Disease stage

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact