refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 616 results
Sort by

Filters

Technology

Platform

accession-icon GSE42690
Exon-level expression profiling of normal colonic mucosa samples.
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

These samples have been analyzed for global alternative splicing variation on exon-level expression data using the FIRMA algorithm. We have identified and described transcriptome instability as a genome-wide, pre-mRNA splicing related characteristic of solid cancers.

Publication Title

Transcriptome instability as a molecular pan-cancer characteristic of carcinomas.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE83111
Recurrent involvement of DPP9 in gene fusions in serous ovarian carcinoma
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

We have looked for fusion genes in ovarian carcinomas. We combined previously known genomic aberrations, detected by karyotyping, and gene expression analysis. We found recurrent DPP9 gene expression deregulation with matching translocations. In additon, candidate fusion partner genes from the exon-level expression analysis were ranked according to deviating expression compared to the median of the sample set. The results were collated with data obtained from the RNA-seq analysis.

Publication Title

Involvement of DPP9 in gene fusions in serous ovarian carcinoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69182
Exon level expression profiling of colorectal cancer tissue samples (77 samples)
  • organism-icon Homo sapiens
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

These colorectal cancer (CRC) samples have been analyzed by exon expression profiling to identify genes with overexpression of 3 parts. By characterizing underlying transcript structures of such genes with a combination of rapid amplification of cDNA ends and deep-sequencing (RACE-seq), we identify and describe novel RNA-variants in CRC.

Publication Title

Novel RNA variants in colorectal cancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE140258
Gene expression profiling of colorectal cancer cell lines after treatment with talazoparib
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We have performed post-treatment gene expression profiling of cell lines to analyze response mechanisms to PARP inhibition.

Publication Title

Molecular correlates of sensitivity to PARP inhibition beyond homologous recombination deficiency in pre-clinical models of colorectal cancer point to wild-type TP53 activity.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE38517
Expression data from fibroblasts derived from human normal oral mucosa, oral dysplasia and oral squamous cell carcinoma
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of genes that are differentially regulated in fibroblasts derived from dysplastic oral mucosa and oral squamous cell carcinoma compared to fibroblasts derived from normal oral mucosa.

Publication Title

Identification of two distinct carcinoma-associated fibroblast subtypes with differential tumor-promoting abilities in oral squamous cell carcinoma.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE79959
Expression profiling of colorectal cancer (CRC) tissue samples with microsatellite instability (MSI)
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

As part of a genomic profiling study of CRCs with MSI, we have performed genome-wide expression analyses of a consecutive patient series.

Publication Title

Multilevel genomics of colorectal cancers with microsatellite instability-clinical impact of JAK1 mutations and consensus molecular subtype 1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP047407
Coding mutations and loss-of-imprinting in human pluripotent cells derived by nuclear transfer and defined factors [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Human pluripotent stem cells can be derived from somatic cells by forced expression of defined factors, and more recently by nuclear-transfer into human oocytes, revitalizing a debate on whether one reprogramming approach might be advantageous over the other. Here we compared the genetic and epigenetic stability of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal and adult origin. Both cell types shared similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs have comparable numbers of de novo coding mutations but significantly higher than parthenogenetic ESCs. Similar to iPSCs NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes, similarly to iPSCs. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of the underlying technique. Overall design: RNA sequencing analysis was performed on a total of 12 human cell lines, including: an isogenic set of 3 nuclear-transfer embryonic stem cell (NT-ESC) lines, 2 RNA-reprogrammed induced pluripotent stem cell (iPSC) lines and their parental neonatal fibroblast cell line; an isogenic set of 1 NT-ESC line, 3 iPSC lines and their parental adult fibroblast cell line (derived from a type 1 diabetic subject); as well as 1 control embryonic stem cell (ESC) line.

Publication Title

Comparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27554
EARLY DETECTION OF LUNG CANCER BY MOLECULAR MARKERS IN ENDOBRONCHIAL LINING FLUID
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Early detection of lung cancer by molecular markers in endobronchial epithelial-lining fluid.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE27489
SCREENING STUDY TO IDENTIFY DIAGNOSTIC MARKERS FOR LUNG CANCER IN ENDOBRONCHIAL LINING FLUID
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We investigated whether biomarker analysis in endobronchial epithelial lining fluid (ELF) collected by bronchoscopic microsampling may be useful for a definitive preoperative diagnosis. Therefore we compared ELF samples close to nodule and from the contralateral site from patients with malignant or benign diagnosis.

Publication Title

Early detection of lung cancer by molecular markers in endobronchial epithelial-lining fluid.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE54876
Human oocytes reprogram adult somatic nuclei to diploid pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells, holding promise for autologous cell replacement therapy. Though reprogramming of somatic cells by nuclear transfer was first demonstrated more than 60 years ago, only recently have human diploid embryonic stem cells been derived after nuclear transfer of fetal and neonatal fibroblasts. Because of the therapeutic potential of developing diploid embryonic stem cell lines from adult cells of normal and diseased human subjects, we have systematically investigated the parameters affecting efficiency and developmental potential in their derivation. We found that improvements to the oocyte activation protocol, including the use of both a kinase and a translation inhibitor, and cell culture in the presence of histone deacetylase inhibitors enable development of diploid cells to the blastocyst stage. Developmental efficiency varied significantly between oocyte donors, and was inversely related to the number of days of hormonal stimulation required to reach mature oocytes, while the daily dose of gonadotropin or the total number of MII oocytes retrieved did not affect developmental outcome. The use of diluted Sendai virus in calcium-free medium during nuclear transfer improved developmental potential, while the use of concentrated Sendai virus induced an increase in intracellular calcium and caused premature oocyte activation. Using these modifications to the nuclear transfer protocol, we successfully derived diploid pluripotent stem cell lines from both postnatal and adult somatic cells of a type 1 diabetic subject.

Publication Title

Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact