refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 52 results
Sort by

Filters

Technology

Platform

accession-icon GSE20392
Comparison of GFP- and Nurr1-infected ES-cell derived neurons
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

ES cell-derived neurons of forebrain identity were isolated by magnetic sorting, cultured for 7 days and transduced with either Nurr1 or eGFP lentivirus. After an additional 12 h in culture, mRNA was isolated and subjected to microarray analysis.

Publication Title

NR4A orphan nuclear receptors as mediators of CREB-dependent neuroprotection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP017560
Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Nurr1 (Nr4a2, nuclear receptor subfamily 4 group A member 2) is needed for the development of ventral midbrain dopaminergic neurons, and has been associated with Parkinson''s disease. We used mice where the Nurr1 gene is ablated by tamoxifen treatment selectively in dopaminergic neurons. As a control, we used tamoxifen-treated mice where Nurr1 is not ablated. By laser microdissection of neurons selected by their TH1 (Th1l, TH1-like homolog) gene expression, we selected dopaminergic neurons for RNA extraction and high-throughput mRNA sequencing, in order to identify genes regulated by Nurr1. We found the main functional category of Nurr1-regulated genes are the nuclear-encoded mitochondrial genes. Overall design: Dopaminergic neurons with or without Nurr1 knocked out. TH-positive neurons were laser capture microdissected from cryostat coronal sections of the midbrain.

Publication Title

Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP022764
Quantitative single-cell RNA-seq
  • organism-icon Mus musculus
  • sample-icon 236 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Purpose: We applied cDNA molecule counting using unique molecular identifiers combined with high-throughput sequencing to study the transcriptome of individual mouse embryonic stem cells, with spike-in controls to monitor technical performance. We further examined transcriptional noise in the embryonic stem cells. Overall design: One 96-well plate of single-stranded cDNA libraries generated from 96 single R1 mouse embryonic stem cells sequenced on two lanes, and one 96-well plate of the same libraries further amplified by 9 PCR cycles sequenced on one lane.

Publication Title

Quantitative single-cell RNA-seq with unique molecular identifiers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1907
Sarcoidosis + Follow-up study
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

Sarcoidosis + Follow-up 6 month after

Publication Title

Functional genomics and prognosis in sarcoidosis--the critical role of antigen presentation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26101
Histone acetylation and DNA demethylation of T-cells result in an anaplastic large cell lymphoma-like phenotype.
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A characteristic feature of anaplastic large cell lymphoma (ALCL) is the significant reduction of the T-cell expression program despite its T-cell origin, a finding very similar to the loss of B-cell identity of classical Hodgkin lymphoma (cHL). Previously we demonstrated that epigenetic mechanisms are active in cHL to induce this peculiar phenotype. The results show that combined DNA demethylation and histone acetylation of T-cell lines induce an almost complete extinction of the T-cell phenotype, including the down-regulation of essential T-cell receptor signalling pathway genes such as CD3, LCK and ZAP70, as well as an up-regulation of ALCL-characteristic genes. In contrast, combined DNA demethylation and histone acetylation of ALCL cells is not able to reconstitute their T-cell phenotype. This clearly demonstrates that similar epigenetic mechanisms are active in ALCL and cHL which are responsible for the extinction of their cell type characteristic phenotype.

Publication Title

Histone acetylation and DNA demethylation of T cells result in an anaplastic large cell lymphoma-like phenotype.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP167434
Prediction of bacterial infection outcome using single cell RNA-seq analysis of human immune cells [WT/TLR10 bulk RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 71 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

During host-pathogen encounters, the complex interactions between different immune cell-types can determine the outcome of infection. Advances in single cell RNA-seq (scRNA-seq) allow to probe this complexity of immunity, and afforded the basis for deconvolution algorithms that infer cell-type compositions from bulk RNA-seq measurements. However, immune activation, an important aspect of immune surveillance, is not represented in current algorithms. Here, using scRNA-seq of human peripheral blood cells infected with Salmonella, we developed a novel deconvolution algorithm to infer dynamic immune states from bulk measurements. We applied our dynamic deconvolution algorithm both to cohorts of healthy individuals challenged ex vivo with Salmonella and to cohorts of tuberculosis patients during different stages of disease. We revealed cell-type specific immune responses associated not only with ex vivo infection phenotype but also with clinical disease stage. We propose that our approach provides a predictive power to identify risk for disease, and can be applied to comprehensively study human infection outcome. Overall design: PBMCs were isolated from 8 individuals bearing or not TLR10 polymorphism and were infected ex vivo with Salmonella enterica serovar Typhimurium. RNA was extracted before infection, 4 hours post infection and 8 hours post infection.

Publication Title

Predicting bacterial infection outcomes using single cell RNA-sequencing analysis of human immune cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP188983
Prediction of bacterial infection outcome using single cell RNA-seq analysis of human immune cells [WB/PBMCs bulk RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 62 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

During host-pathogen encounters, the complex interactions between different immune cell-types can determine the outcome of infection. Advances in single cell RNA-seq (scRNA-seq) allow to probe this complexity of immunity, and afforded the basis for deconvolution algorithms that infer cell-type compositions from bulk RNA-seq measurements. However, immune activation, an important aspect of immune surveillance, is not represented in current algorithms. Here, using scRNA-seq of human peripheral blood cells infected with Salmonella, we developed a novel deconvolution algorithm to infer dynamic immune states from bulk measurements. We applied our dynamic deconvolution algorithm both to cohorts of healthy individuals challenged ex vivo with Salmonella and to cohorts of tuberculosis patients during different stages of disease. We revealed cell-type specific immune responses associated not only with ex vivo infection phenotype but also with clinical disease stage. We propose that our approach provides a predictive power to identify risk for disease, and can be applied to comprehensively study human infection outcome. Overall design: Whole-blood (WB) cells and PBMCs were isolated from 4 healthy individuals and were infected ex vivo with Salmonella enterica serovar Typhimurium or with PBS as control. RNA was extracted 4 hours later.

Publication Title

Predicting bacterial infection outcomes using single cell RNA-sequencing analysis of human immune cells.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon GSE40715
Gene signature of adult mammary stem cells and mammary cancer stem cells
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cancer stemness in Wnt-driven mammary tumorigenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40702
Gene signature of adult mammary stem cells and mammary cancer stem cells (Affymetrix)
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Wnt/beta-catenin signalling pathway plays a central role in mammary stem cell homeostasis and in breast cancer. We employed the CD29hiCD24+ cell surface antigens to identify a subpopulation of mammary CSCs from Apc1572T/+, a mouse model for metaplastic breast adenocarcinoma, a subtype of triple-negative breast cancer in man. The MaCSCs are capable of recapitulating tumorigenesis when transplanted at low multiplicities in vivo, and of forming self-renewing organoids in vitro. Expression profiling of the different subpopulations sorted from normal and neoplastic mammary tissues revealed that the normal stem cell compartment is more similar to tumor cells than to their own differentiated progenies. Accordingly, Wnt signaling was found to be activated in the subpopulation encompassing normal mammary stem cells, though to a lesser degree than in the tumor cells. By comparing normal with cancer mouse mammary compartments, we were able to derive a MaCSC-specific signature composed of human orthologous genes able to predict poor survival, relapse and distant metastasis in human breast cancer. Finally, upon intravenous injection, only MaCSCs among the different tumor cell subpopulations are able to form metastatic lesions in a broad spectrum of anatomical sites. Overall, our data indicate that constitutive Wnt signaling activation interferes with mammary stem cell homeostasis leading to metaplasia and basal-like adenocarcinomas.

Publication Title

Cancer stemness in Wnt-driven mammary tumorigenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47772
Expression data from subpopulations of Apc1638N/+ intestinal adeno tumors versus Apc1638N/+ / KRAS v12G intestinal adenocarcinomas tumors
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Constitutive activation of the Wnt pathway leads to adenoma formation, an obligatory step towards intestinal cancer. In view of the established role of Wnt in regulating stemness, we attempted the isolation of cancer stem cells (CSCs) from Apc- and Apc/KRAS-mutant intestinal tumours. Whereas CSCs are present in malignant Apc/KRASmutant carcinomas, they appear to be very rare (<10-6) in the benign Apcmutant adenomas. In contrast, the Lin-CD24hiCD29+ subpopulation of adenocarcinoma cells appear to be enriched in CSCs with increased levels of active -catenin. Expression profiling analysis of the CSC-enriched subpopulation confirmed their enhanced Wnt activity and revealed additional differential expression of other signalling pathways, growth factor binding proteins, and extracellular matrix components. As expected, genes characteristic of the Paneth cell lineage (e.g. defensins) are co-expressed together with stem cell genes (e.g. Lgr5) within the CSC-enriched subpopulation. This is of interest as it may indicate a cancer stem cell niche role for tumor-derived Paneth-like cells, similar to their role in supporting Lgr5+ stem cells in the normal intestinal crypt. Overall, our results indicate that oncogenic KRAS activation in Apc-driven tumours results in the expansion of the CSCs compartment by increasing b-catenin intracellular stabilization.

Publication Title

Cancer stemness in Apc- vs. Apc/KRAS-driven intestinal tumorigenesis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact