refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 77 results
Sort by

Filters

Technology

Platform

accession-icon GSE22832
Transcriptional response of Sacchromyces cerevisiae to change in oxygen provision
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

In industrial fermentations of Saccharomyces cerevisiae, transient changes in oxygen concentration commonly occur and it is important to understand the behaviour of cells during these changes. Saccharomyces cerevisiae CEN.PK113-1A was grown in glucose-limited chemostat culture with 1.0% and 20.9% O2 in the inlet gas (D= 0.10 /h, pH5, 30C). After steady state was achieved, oxygen was replaced with nitrogen and cultures were followed until new steady state was achieved. The overall responses to anaerobic conditions of cells initially in different conditions were very similar. Independent of initial culture conditions, transient downregulation of genes related to growth and cell proliferation, mitochondrial translation and protein import, and sulphate assimilation was seen. In addition, transient or permanent upregulation of genes related to protein degradation, and phosphate and amino acid uptake was observed in all cultures. However, only in the initially oxygen-limited cultures was a transient upregulation of genes related to fatty acid oxidation, peroxisomal biogenesis, oxidative phosphorylation, TCA cycle, response to oxidative stress, and pentose phosphate pathway observed. Furthermore, from the initially oxygen-limited conditions, a rapid response around the metabolites of upper glycolysis and the pentose phosphate pathway was seen, while from the initially fully aerobic conditions, a slower response around the pathways for utilisation of respiratory carbon sources was observed.

Publication Title

Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism.

Sample Metadata Fields

Time

View Samples
accession-icon E-MEXP-791
Transcription profiling of Arabidopsis leaves, roots and whole plants grown in high or low phosphate conditions for different lengths of time
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The effects of phosphate starvation in Arabidopsis thaliana (L.) plants were compared in plants grown in liquid MS medium transferred in low or high Pi and in plants grown vertically in petri dishes during 10 days. In the transfer experiments, 2 treatments were analysed for evaluating the short-(3, 6 and 12 h pooled) and medium-(1 and 2 d pooled) term effects of Pi deficiency on the gene expression. Since some Arabidopsis genes are regulated by diurnal rhythm and circadian clocks, plantlets were harvested separately at the beginning and at the end of the photoperiod and pooled. In the long term experiment, leaves and roots were sampled separately after 10 days. Triplicates were analysed for each experiment.

Publication Title

A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP044781
Danio rerio Transcriptome
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Transcriptome analysis of 12 zebrafish tissues

Publication Title

Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE59237
TSLP effects on primary human blood dendritic cells
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The ontogeny of human Langerhans cells (LCs) remains poorly characterized, in particular the nature of LC precursors and the factors that may drive LC differentiation. Through a systematic transcriptomic analysis of TSLP-activated dendritic cells (DCs), we unexpectedly identified markers that have been associated with a skin-homing potential as well as with a LC phenotype. We performed transcriptomic analysis of TSLP-activated blood DCs, as compared to freshly purified, Medium-, and TNF-activated DCs. Among TSLP up-regulated genes, we identified molecules associated with skin homing, LC phenotype, and LC function, as determined by a literature-based survey. Conversely, genes not expressed in LCs were not found among TSLP-induced genes. Further experiments showed that TGF- synergized with TSLP leading to the differentiation of blood BDCA-1+ DCs into bona fide Birbeck granule-positive LCs.

Publication Title

Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-β.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE82247
Expression data from SHP specific siRNA or nonspecefic siRNA transfected rat astrocytes [extended study]
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

To clarify the effect of SHP in LXRs-mediated signaling pathway, we performed global gene expression analysis of SHP siRNA transfected- or control siRNA transfected- astrocytes after IFN- and LXRs agonist. Microarray analysis revealed that expression of several genes encoding inflammatory mediators were reversed in SHP siRNA transfected-astrocytes, when compared with control siRNA transfected-astrocytes.

Publication Title

Small heterodimer partner SHP mediates liver X receptor (LXR)-dependent suppression of inflammatory signaling by promoting LXR SUMOylation specifically in astrocytes.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE67229
Topaz1, a germ cell specific factor essential for male meiotic progression.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Testicular gene expression changes with loss of Topaz1

Publication Title

TOPAZ1, a germ cell specific factor, is essential for male meiotic progression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33726
The circadian clock coordinates ribosome biogenesis.
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Evolutionary conserved biological rhythms play a fundamental role in the physiology and behavior of all light-sensitive organisms. Generation of rhythmic expression of clock-controlled genes is orchestrated by a molecular circadian clock constitutes by interconnected negative feedback loops of transcription factors. In this study, we want to characterize gene which also present a rhythmic translation through the characterization of genes with a rhythmic polysomal/total RNA ratio.

Publication Title

The circadian clock coordinates ribosome biogenesis.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Time

View Samples
accession-icon SRP166459
Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors [Modifications - validation]
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Base Editing has been touted the most intelligent and precise application of the CRISPR platform so far, merging the simplicity of RNA-guided nucleases with deaminases that allow for the programmable generation of single base substitutions - without introduction of double-strand breaks. Even though the two-component system has been expected to cause off-target substitutions, studies involving cytosine base editors (CBEs) showed that in most cases, relatively few single base off-targets could be detected on DNA. We introduce the concept of multi-dimensional off-targeting, presenting an extensive amount of RNA cytidines being edited by DNA base editors. Epitranscriptomic off-target effects affected different cell lines and were independent of the guide RNAs used, suggesting Cas9-independent activity of the cytidine deaminase rAPOBEC1 on single-stranded RNA. With the help of protein engineering, we developed CBE variants with massively reduced inadvertent mutation of RNA that preserve and enhance DNA base editing capabilities. Overall design: HEK293T and HepG2 cells were transfected with regular and modified pCAG-BE3-P2A-EGFP or control pCAG-nCas9(D10A)-UGI-NLS-P2A-EGFP or control pCAG-P2A-EGFP constructs with various gRNAs as described below. Cells were sorted for top 5% GFP or all GFP + cells based on FITC signal. RNA-seq was performed to measure transcriptional changes associated with different constructs and guides.

Publication Title

Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP166458
Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors [BaseEditors - RNA]
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Base Editing has been touted the most intelligent and precise application of the CRISPR platform so far, merging the simplicity of RNA-guided nucleases with deaminases that allow for the programmable generation of single base substitutions - without introduction of double-strand breaks. Even though the two-component system has been expected to cause off-target substitutions, studies involving cytosine base editors (CBEs) showed that in most cases, relatively few single base off-targets could be detected on DNA. We introduce the concept of multi-dimensional off-targeting, presenting an extensive amount of RNA cytidines being edited by DNA base editors. Epitranscriptomic off-target effects affected different cell lines and were independent of the guide RNAs used, suggesting Cas9-independent activity of the cytidine deaminase rAPOBEC1 on single-stranded RNA. With the help of protein engineering, we developed CBE variants with massively reduced inadvertent mutation of RNA that preserve and enhance DNA base editing capabilities. Overall design: HEK293T and HepG2 cells were transfected with pCAG-BE3-P2A-EGFP or control pCAG-nCas9(D10A)-UGI-NLS-P2A-EGFP or control pCAG-P2A-EGFP constructs with various gRNAs as described below. Cells were sorted for top 5% GFP or all GFP + cells based on FITC signal. RNA-seq was performed to measure transcriptional changes associated with different constructs and guides.

Publication Title

Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE5664
gene profiling in carcinoma cell during EMT
  • organism-icon Rattus norvegicus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Modulation of several waves of gene expression during FGF-1 induced Epithelial-mesenchymal transition of carcinoma cells . In vitro FGF-1 induced EMT study using NBTII rat bladder carcinoma cells

Publication Title

Modulation of several waves of gene expression during FGF-1 induced epithelial-mesenchymal transition of carcinoma cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact