refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 64 results
Sort by

Filters

Technology

Platform

accession-icon GSE119437
Nuclear FOXO1 promotes lymphomagenesis in germinal center B cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

FOXO1 acts as a tumor suppressor in solid tumors. The oncogenic PI3K pathway suppresses FOXO1 transcriptional activity by enforcing its nuclear exclusion upon AKT-mediated phosphorylation. We show here abundant nuclear expression of FOXO1 in Burkitt lymphoma (BL), a germinal center (GC) B cell derived lymphoma whose pathogenesis is linked to PI3K activation. Recurrent FOXO1 mutations which prevent AKT targeting and lock the transcription factor in the nucleus are used by BL to circumvent mutual exclusivity between PI3K and FOXO1 activation. Using genome editing in human and mouse lymphomas in which MYC and PI3K cooperate synergistically in tumor development we demonstrate pro-proliferative and anti-apoptotic activity of FOXO1 in BL and identify its nuclear localization as an oncogenic event in GC B cell derived lymphomagenesis.

Publication Title

Nuclear FOXO1 promotes lymphomagenesis in germinal center B cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP049605
Identification of a Molecular Signature for Acute Lyme Disease by Human Transcriptome Profiling
  • organism-icon Homo sapiens
  • sample-icon 97 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Lyme disease is challenging to diagnose, as clinical manifestations are variable and current tools to detect nucleic acid or antibody responses from Borrelia burgdorferi infection have low sensitivity. Here we conducted the first study of the global transcriptome of patients with Lyme disease to identify potential diagnostic biomarkers. Twenty-nine patients were enrolled and compared to 13 healthy controls at three time points after infection. Fifteen publicly available transcriptome datasets from patients in vivo or infection models in vitro were used to assess specificity of differentially expressed genes (DEGs). We found that Lyme disease results in profound and sustained changes in the patient transcriptomes, with a specific signature that shares =44% DEGs with other infections. Overall design: Gene expression profile from peripheral mononuclear blood cells (PBMC) of Lyme disease patients against healthy controls was undertaken. A total of 29 Lyme disease patients were sampled at 3 time points: acute Lyme pre-treatment (V1), 3 weeks later, immediately following completion of a standard course of antibiotics (V2), and 6 months following treatment completion (V5). 13 healthy controls were also sampled at one time point. Total RNA was extracted from 10e7 PBMC, followed by mRNA purification, paired-end barcode library preparation and sequencing on an Illumina Hiseq 2000.

Publication Title

Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE84331
Expression data from the CD8 T cells of healthy donors and dengue patients from Thailand
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CD8 T cells play roles in eliminating virus infected targets through cytotoxic effector function and are of great interest from vaccination prespective. Previous studies suggest that the cytokines produced by the CD8 T cells may contribute to the pathological consequences. Because the dengue specific memory T cells strongly secrete cytokines upon in vitro stimulation with heterologous viral antigen, the cytokine storm induced by activated T cells may contribute to the immunopathology of dengue infection. Moreover, the CD8 T cell expansion peaks before or around the time of the peak of clinical symptoms, and the frequency of activated CD8 T cells and cytokine producing cells was somewhat higher in patients with severe forms of dengue disease.

Publication Title

Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE71174
Affymetrix GeneChip Mouse Gene 1.0 arrays of RNA extracted from gastrocnemius muscle of 4 global Ppp3cb KO mice and 4 corresponding WT littermates, and 4 skeletal muscle-specific Ppp3r1Mlc1fCre KO and 4 corresponding WT littermates.
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Global deficiency of catalytic subunit Ppp3cb, and tissue-specific ablation of regulatory subunit Ppp3r1 from skeletal muscle but not adipose tissue or liver led to protection from high-fat diet induced obesity and comorbid sequel.

Publication Title

Calcineurin Links Mitochondrial Elongation with Energy Metabolism.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE40292
eQTL Analysis Identifies Novel Associations Between Genotype and Gene Expression in the Human Intestine (Expression)
  • organism-icon Homo sapiens
  • sample-icon 191 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Genome-wide association studies (GWAS) have been pivotal to increasing our understanding of intestinal disease. However, the mode by which genetic variation results in phenotypic change remains largely unknown, with many associated polymorphisms likely to modulate gene expression. Analyses of expression quantitative trait loci (eQTL) to date indicate that as many as 50% of these are tissue specific. Here we report a comprehensive eQTL scan of intestinal tissue.

Publication Title

Expression quantitative trait loci analysis identifies associations between genotype and gene expression in human intestine.

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon GSE109780
Role of skeletal muscle in palate development.
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The involvement of skeletal muscle in the process of palatal development in mammals is an example of Waddingtonian epigenetics. Our earlier study showed that the cleft palate develops in the complete absence of skeletal musculature during embryonic development in mice. This contrasts with previous beliefs that tongue obstruction prevents the elevation and fusion of the palatal shelves. We argue that the complete absence of mechanical stimuli from the adjacent muscle, i.e., the lack of both static and dynamic loading, results in disordered palatogenesis. We further suggest that proper fusion of the palatal shelves depends not only on mechanical but also on paracrine contributions from the muscle. The muscle's paracrine role in the process of palatal fusion is achieved through its being a source of certain secreted and/or circulatory proteins.

Publication Title

Role of skeletal muscle in palate development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85482
mRNA exrpession from human gdT-cells
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The experiment aims to identify mRNAs illustrating the unique nature of the gd T-cell subtype

Publication Title

Human Vδ2 T cells are a major source of interleukin-9.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE109783
Role of skeletal muscle in lung development.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia.

Publication Title

Role of skeletal muscle in lung development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE109784
Role of skeletal muscle in motor neuron development.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This study describes a cDNA microarray analysis that compared developing mouse MyoD-/- limb musculature (MyoD-dependent, innervated by Lateral Motor Column motor neurons) and Myf5-/- back (epaxial) musculature (Myf5-dependent, innervated by Medial Motor Column motor neurons) to the control and to each other, at embryonic day 13.5 which coincides with the robust programmed cell death of motor neurons and the inability of myogenesis to undergo its normal progression in the absence of Myf5 and MyoD that at this embryonic day cannot substitute for each other.

Publication Title

Role of skeletal muscle in motor neuron development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE114743
Microarray gene expression profiling in colorectal (HCT116) and hepatocellular (HepG2) carcinoma cells treated with Melicope ptelefolia leaf extract reveals transcriptome profiles exhibiting anticancer activity
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Microarray whole-transcriptome profiling in HCT116 and HepG2 cells treated with Melicope ptelefolia leaf extract reveals transcriptome profles exhibiting anticancer activity

Publication Title

Microarray gene expression profiling in colorectal (HCT116) and hepatocellular (HepG2) carcinoma cell lines treated with <i>Melicope ptelefolia</i> leaf extract reveals transcriptome profiles exhibiting anticancer activity.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact