refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 21 results
Sort by

Filters

Technology

Platform

accession-icon SRP100476
Gene expression profile of neurons expressing protein kinase C d (PKCd) or somatostatin (SST) in the central amygdala (CEA) of mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Circuit neuroscience has made great progress by linking neuronal function to marker gene expression, allowing the specific investigation of otherwise indistinguishable neuronal ensembles. Here, we performed next generation sequencing on two functionally and genetically distinct interneuronal populations marked by the expression of protein kinase C d (PKCd) or somatostatin (SST) in the central amygdala (CEA) of mice, which are known to play distinct and sometimes opposing roles in emotion processing. Making their gene expression profile known will aid in forming hypotheses of how different neurotransmitters or psychoactive drugs could alter information processing in these neurons. Overall design: Unchallenged gene expression profile of two different neuronal populations in the central amygdala

Publication Title

Dorsal tegmental dopamine neurons gate associative learning of fear.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP159106
The effect of genetic background on cognitive and pathological traits: AD-BXD [dataset 2]
  • organism-icon Mus musculus
  • sample-icon 88 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cg.5XFAD females (MMRRC Stock No #34848-JAX) were bred to males from BXD strains. The resulting F1 progeny were monitored throughout their lifepan to evaluate the effect of genetic background on cognitive and pathological traits. Samples here come from various AD-BXD lines at either 6 or 14 months of age. An earlier dataset of similar design (plus Non-transgenic littermates) was deposited as GSE101144. Ntg littermates of mice sampled here will be deposited as a separate GEO series. Overall design: 88 AD samples. For final by-strain analysis, samples were averaged into strain/age/genotype/sex groups (For example, all D2 6mo 5XFAD males were averaged for final by-strain analysis)

Publication Title

Identification of Pre-symptomatic Gene Signatures That Predict Resilience to Cognitive Decline in the Genetically Diverse AD-BXD Model.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP111520
The effect of genetic background on cognitive and pathological traits: AD-BXD
  • organism-icon Mus musculus
  • sample-icon 108 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Female C57BL/6J mice hemizygous for the 5XFAD transgene (MMRRC Stock No #34848-JAX) were bred to males from BXD strains, which do not carry the 5XFAD transgene. The resulting F1 progeny were monitored throughout their lifespan to evaluate the effect of genetic background on cognitive and pathological traits. All of the mice were fear conditioned and sacrificed within 30 minutes of testing. On the sample records, the characteristics: age field provides the age at which fear conditioning, sacrifice, and tissue collection occurred. Samples here come from various AD-BXD lines and their non-transgenic (Ntg) littermate counterparts at either 6 or 14 months of age. Overall design: 133 samples, 64 Ntg and 69 AD. For final by-strain analysis, samples were averaged into strain/age/genotype/sex groups (For example, all D2 6mo 5XFAD males were averaged for final by-strain analysis)

Publication Title

Harnessing Genetic Complexity to Enhance Translatability of Alzheimer's Disease Mouse Models: A Path toward Precision Medicine.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon SRP066231
Mouse ES Timecourse
  • organism-icon Mus musculus
  • sample-icon 77 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

High temporal resolution RNAseq timecourse of mouse ES differentiation Investigations of transcriptional responses during developmental transitions typically use time courses with intervals that are not commensurate with the timescales of known biological processes. Moreover, such experiments typically focus on protein-coding transcripts, ignoring the important impact of long noncoding RNAs. We evaluated coding and noncoding expression dynamics at unprecedented temporal resolution (6-hourly) in differentiating mouse embryonic stem cells and report the effects of increased temporal resolution on the characterization of the underlying molecular processes. Overall design: Biological duplicate 120 hours of undirected mouse ES cell differentiation sampled 6 hourly Biological duplicate, low passage number (P18) W9.5 ESCs were cultured and differentiated as described previously [PMID:18562676; 17286599]. Cultures were harvested every six hours from the induction of differentiation to 120 hours post differentiation induction. Total RNA from cultures was purified using Trizol (Life Technologies) and DNase treatment was performed by RQ1 DNase (Promega) according to the manufacturer’s instructions. RNA integrity was measured on a Bioanalyzer RNA Nano chip (Agilent). RNA-Seq library preparation and sequencing of Poly-A-NGS libraries generated from 500 ng total RNA using SureSelect Strand Specific RNA Library Preparation Kit (Agilent) according to the manufacturer’s instructions. Paired-end libraries were sequenced to the first 100 bp on a HiSeq 2500 (Illumina) on High Output Mode. Library sequencing quality was determined using FastQC (Babraham Bioinformatics) and FastQ Screen (Babraham Bioinformatics). Illumina adaptor sequence and low quality read trimming (read pair removed if < 20 base pairs) was performed using Trim Galore! (Babraham Bioinformatics: www.bioinformatics.babraham.ac.uk/). Tophat2 [PMID:23618408] was used to align reads to the December 2011 release of the mouse reference genome (mm10) as outlined by Anders et al.[PMID:23975260]. Read counts data corresponding to GENCODE vM2 transcript annotations were generated using HTSeq[PMID:25260700]. All analyses were performed in the R Statistical Environment [PMID:18000755]. Briefly, counts data were background corrected and normalized for library size using edgeR [PMID:19910308], then transformed using voom[PMID:24485249] for differential expression analysis using LIMMA[PMID: 16646809].

Publication Title

High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci.

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples
accession-icon GSE26973
G3P triggered changes in systemic transcriptome
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Goal of this study was to determine changes in transcription profile in mock versus G3P treated plants. Arabidopsis (Col-0 ecotype) plants were infiltrated with petiole exudate, with or without G3P, and distal leaves were sampled 24 h post treatments.

Publication Title

Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26697
Transcriptomic response of murine liver to severe injury and hemorrhagic shock
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptomic response of murine liver to severe injury and hemorrhagic shock: a dual-platform microarray analysis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26695
Transcriptomic response of murine liver to severe injury and hemorrhagic shock: Affymetrix portion of dual platform
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A dual platform microarray analysis was used to characterize the temporal transcriptomic response in the mouse liver following trauma and hemmorhagic shock

Publication Title

Transcriptomic response of murine liver to severe injury and hemorrhagic shock: a dual-platform microarray analysis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE7678
miRNA34 expression in SW480 cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

SW480 were stably transfected with an episomal plasmid expressing GFP and miRNA34 from a bidirectional doxycyclin regulatable promoter (Bornkamm et al Nucleic Acids Res. 2005 Sep 7;33(16)). Polyclonal cell lines were obtained by selection with Hygromycin at 350ug/ml for 10 days. The cell llnes identified as GFP only express GFP, whereas the cell lines identified as miRNA34a express both GFP and miRNA34 under doxycyclin control. For the present experiment, cells were treated with 1ug/ml Docycyclin for 72h. Cells were harvested and total RNA was isolated using Trizol (Invitrogen). After RNA cleanup (RNeasy, Qiagen) Affymetrix 133 Plus 2.0 micorarrays were hybridized using standard techniques.

Publication Title

p53-mediated activation of miRNA34 candidate tumor-suppressor genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP143362
CAGE profiling after treatment with JQ1 BET inhibitor in lung cancer cell line.
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The bromodomain and extra-terminal domain (BET) proteins are promising drug targets for cancer and immune diseases. However, BET inhibition effects have been studied more in the context of bromodomain-containing protein 4 (BRD4) than BRD2, and the BET protein association to histone H4-hyperacetylated chromatin is not understood at the genome-wide level. Here, we report transcription start site (TSS)-resolution integrative analyses of ChIP-seq and transcriptome profiles in human non-small cell lung cancer (NSCLC) cell line H23. We show that di-acetylation at K5 and K8 of histone H4 (H4K5acK8ac) co-localizes with H3K27ac and BRD2 in the majority of active enhancers and promoters, where BRD2 has a stronger association with H4K5acK8ac than H3K27ac. Although BET inhibition by JQ1 led to complete reduction of BRD2 binding to chromatin, only local changes of H4K5acK8ac levels were observed, suggesting that recruitment of BRD2 does not influence global histone H4 hyperacetylation levels. This finding supports a model in which recruitment of BET proteins via histone H4 hyperacetylation is predominant over hyperacetylation of histone H4 by BET protein-associated acetyltransferases. In addition, we found a remarkable number of BRD2-bound genes, including MYC and its downstream target genes, were transcriptionally upregulated upon JQ1 treatment. Using BRD2-enriched sites and transcriptional activity analysis, we identified candidate transcription factors potentially involved in the JQ1 response in BRD2-dependent and independent manner. Overall design: Lung cancer cell line H23 was treated with JQ1 BET inhibitor. Gene expression profiling by CAGE was performed after 0h, 3h, 6h, 12h and 24h.

Publication Title

JQ1 affects BRD2-dependent and independent transcription regulation without disrupting H4-hyperacetylated chromatin states.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE59210
Genome wide expression analysis of bone marrow derived macrophage cells (BMDMs) stimulated with IFNg and effect of Batf2 knockdown in BMDMs stimulated with IFNg
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Batf2/Irf1 induces inflammatory responses in classically activated macrophages, lipopolysaccharides, and mycobacterial infection.

Sample Metadata Fields

Sex, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact