refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 46 results
Sort by

Filters

Technology

Platform

accession-icon GSE95038
Expression analysis of CD8+ T cells following high-avidity or low-avidity T cell receptor (TCR) stimulation in the presence or absence of a DOT1L inhibitor
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Adoptive T cell therapy (ACT) is a promising therapeutic approach for cancer patients. The use of allogeneic T cell grafts will improve its applicability and versatility provided that inherent allogeneic responses are controlled. T cell activation is finely regulated by multiple signaling molecules that are transcriptionally controlled by epigenetic mechanisms. Through extensive chemical probe screening, we found that inhibiting DOT1L, a histone H3-lysine 79 methyltransferase, alleviated allogeneic T cell responses.

Publication Title

DOT1L inhibition attenuates graft-versus-host disease by allogeneic T cells in adoptive immunotherapy models.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP127953
Gene expression analysis of human CD8+ T cells treated with a DOT1L inhibitor
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Adoptive T cell therapy (ACT) is a promising therapeutic approach for cancer patients. The use of allogeneic T cell grafts will improve its applicability and versatility provided that inherent allogeneic responses are controlled. Through extensive chemical probe screening, we found that inhibiting DOT1L, a histone H3-lysine 79 methyltransferase, alleviated allogeneic T cell responses. DOT1L inhibition with SGC0946 selectively ameliorated low-avidity T cell responses but not high-avidity antitumor T cell responses mediated by the high-affinity T cell receptor or chimeric antigen receptor. The inhibition of DOT1L in T cells prevented the development of graft-versus-host disease while retaining potent antitumor activity in xenogeneic ACT models. These results suggest that DOT1L inhibition may enable the safe and effective use of allogeneic antitumor T cells by suppressing unwanted immunological reactions in ACT. Overall design: To investigate how DOT1L inhibition modulates the T cell activation signal, we compared gene expression profiles between SGC0946-treated or DMSO-treated (control) T cells by RNA-sequencing analysis. Human CD8+ T cells derived from three different healthy donors were cultured in the presence of SGC0946 or DMSO. Total RNA was collected from each sample and gene expression profiles were analyzed by RNA-sequencing using an Illumina HiSeq 2500 sequencer.

Publication Title

DOT1L inhibition attenuates graft-versus-host disease by allogeneic T cells in adoptive immunotherapy models.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE80667
CoGAPS matrix factorization algorithm identifies AP-2alpha as a feedback mechanism from therapeutic inhibition of the EGFR network
  • organism-icon Homo sapiens
  • sample-icon 92 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Patients with oncogene driven tumors are currently treated with targeted therapeutics such as epidermal growth factor receptor (EGFR) inhibitors. The inhibited oncogenic pathway often interacts with other signaling pathways and alters predicted therapeutic response. Genomic data from The Cancer Genome Atlas (TCGA) demonstrates pervasive molecular alterations to EGFR, MAPK, and PI3K signaling in previously untreated tumors. Therefore, this study uses bioinformatics algorithms to infer the complex pathway interactions that result from EGFR inhibitor use in cancer cells that contain these these common EGFR network genetic alterations. To do this, we modified the HaCaT keratinocyte cell line model of premalignancy to simulate cancer cells with constitutive activation of EGFR, HRAS, and PI3K in a controlled genetic background. We then measured gene expression after treating modified HaCaT cells with three EGFR targeted agents (gefitinib, afatinib, and cetuximab) for 24 hours.

Publication Title

CoGAPS matrix factorization algorithm identifies transcriptional changes in AP-2alpha target genes in feedback from therapeutic inhibition of the EGFR network.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE62027
HNSCC cell lines for CoGAPS matrix factorization algorithm identifies AP-2alpha as a feedback mechanism from therapeutic inhibition of the EGFR network
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To determine the expression AP2-alpha target genes, global gene expression of 7 HNSCC cell lines with and without cetuximab treatment (100 nM, 24 hrs) and the HaCaT keratinocyte cell line was performed.

Publication Title

CoGAPS matrix factorization algorithm identifies transcriptional changes in AP-2alpha target genes in feedback from therapeutic inhibition of the EGFR network.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP139943
Transcriptional alteration after ionizing radiation exposure in human fibroblasts, iPSCs and NPCs
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNA sequencing was performed to investigate ionizing radiation-dependent transcriptional change in human pluripotent cells and differentiated cells. Overall design: Examined 3 types of cells (fibroblasts, iPS cells and neural progenitor cells) and 2 types of treatments (non IR or IR), total 6 samples were analyzed.

Publication Title

Reprogramming and differentiation-dependent transcriptional alteration of DNA damage response and apoptosis genes in human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE40412
Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Genome-wide DNA demethylation, including the erasure of genome imprints, in primordial germ cells (PGCs), is critical as a first step for creating the totipotent epigenome in the germ line. Here, we provide evidence that contrary to the prevailing model involving active DNA demethylation, imprint erasure in mouse PGCs occurs in a manner consistent with replication-coupled passive DNA demethylation: PGCs erase imprints during their rapid proliferation with little de novo as well as maintenance DNA methylation potential and no major chromatin alterations. Our findings necessitate the re-evaluation of and provide novel insights into the mechanism of genome-wide DNA demethylation in PGCs.

Publication Title

Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP171604
Characterization of the genes that were regulated by feeding with CBM 588
  • organism-icon Caenorhabditis elegans
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In the present study, we investigated the effect of CBM 588 on lifespan and multiple-stress resistance using Caenorhabditis elegans as a model animal. When adult C. elegans were fed a standard diet of Escherichia coli OP50 or CBM 588, the lifespan of the animals fed CBM 588 was significantly longer than that of animals fed OP50. Moreover, the worms fed CBM 588 were more resistant to certain stressors, including infections with pathogenic bacteria, UV irradiation, and the metal stressor Cu2+. CBM 588 failed to extend the lifespan of the daf-2/IR, daf-16/FOXO and skn-1/Nrf2 mutants. Transcriptional profiling comparing CBM 588-fed and control-fed animals suggested that DAF-16-dependent class II genes were regulated by CBM 588. In conclusion, CBM 588 extends the lifespan of C. elegans probably through regulation of the insulin/IGF-1 signaling (IIS) pathway and the Nrf2 transcription factor, and CBM 588 improves resistance to several stressors in C. elegans. Overall design: Transcriptional profiling of eight-day-old worms that were fed OP50 or CBM 588 for five days, by deep sequencing, using Illumina HiSeq.

Publication Title

<i>Clostridium butyricum</i> MIYAIRI 588 Increases the Lifespan and Multiple-Stress Resistance of <i>Caenorhabditis elegans</i>.

Sample Metadata Fields

Sex, Cell line, Treatment, Subject

View Samples
accession-icon GSE116309
Analysis of gene expression dynamics during iPS cell derivation from mouse embryonic fibroblasts using reprogramming systems with different Klf4 stoichiometry
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The forced expression of Yamanaka factors (Oct3/4, Sox2, Klf4, and c-Myc) reprograms cells into induced pluripotent stem cells (iPSCs) through a series of sequential cell fate conversions. The order and robustness of gene expression changes are highly depended on the Yamanaka factor stoichiometry. We specifically focused on two different reprogramming paths induced by high- and low-Klf4 stoichiometry, which were accomplished by introducing OK+9MS or OKMS polycistronic cassettes, respectively, into mouse embryonic fibroblasts. By comparing these reprograming intermediates with embryonic stem cells (ESCs) and primary keratinocytes, we identified high-Klf4 specific, transiently up-regulated epithelial genes. We found that expression of these epithelial genes was enriched in a TROP2-positive cell population. Moreover, we identified a set of transcription factors which are candidates for the regulation of transiently expressed epithelial genes, and revealed their connection to high-Klf4-specific reprogramming hallmarks.

Publication Title

OVOL1 Influences the Determination and Expansion of iPSC Reprogramming Intermediates.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE21156
Expression data from rostral forebrains of wild-type and Fezf1-/- Fezf2-/- mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Zinc-finger genes Fezf1 and Fezf2 encode transcriptional repressors. Fezf1 and Fezf2 are expressed in the early neural stem/progenitor cells and control neuronal differentiation in mouse dorsal telencephalon.

Publication Title

Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP055108
Global Gene Expression analysis of CUTLL1 cell lines after treatment with Perhexiline
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We identify perhexiline, a small molecule inhibitor of mitochondrial carnitine palmitoyltransferase-1, as a HES1-signature antagonist drug with robust antileukemic activity against NOTCH1 induced leukemias in vitro and in vivo. Overall design: RNA-Seq from CUTLL1 cell lines treated with Perhexiline or vehicle for 3 days

Publication Title

Therapeutic targeting of HES1 transcriptional programs in T-ALL.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact