refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 323 results
Sort by

Filters

Technology

Platform

accession-icon SRP125292
Transciptomic analysis of maize response to the attack of Sesamia nonagrioides
  • organism-icon Zea mays
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We performed a transcriptomic analysis to identify genes differentially transcribed in the maize stem upon corn borer feeding and treatment with insects regurgitates by using the MACE (Massive Analysis of cDNA Ends) technology. Overall design: Two comparisons were performed: Insect chewing vs control and Regurgitate+wounding vs wounding in three biological replicates per treatment

Publication Title

Maize Stem Response to Long-Term Attack by <i>Sesamia nonagrioides</i>.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP090929
Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Organismal function is, to a great extent, determined by interactions among their fundamental building blocks, the cells. In?this work, we studied the cell-cell interactome of fetal placental trophoblast cells and maternal endometrial stromal cells, using single-cell transcriptomics. The placental interface mediates the interaction between two semiallogenic individuals, the mother and the fetus, and is thus the epitome of cell interactions. To study these, we inferred the cell-cell interactome? by assessing the gene expression of receptor-ligand pairs across cell types. Moreover, we find that the expression of G-protein coupled receptors is highly cell-type?specific, implying that ligand-receptor profiles could be a reliable tool for cell type identification. Furthermore, we find that uterine decidual cells represent a cell-cell interaction hub with a relatively large?number of potential incoming and outgoing signals. Decidual cells differentiate from their precursors, the endometrial stromal fibroblasts, during uterine preparation for pregnancy. We show that decidualization (even in vitro) enhances the ability ?to communicate with the fetus, as most of the receptors and ligands up-regulated during decidualization have their counterpart expressed in trophoblast cells. Among the signals transmitted, growth factors and immune signals dominate, suggesting a delicate balance of enhancing and suppressive signals. Finally, this study provides a rich resource of gene ?expression profiles of term intravillous and extravillous trophoblasts, including the transcriptome of the multinucleated syncytiotrophoblast. Overall design: We sequenced mRNA from primary human endometrial stromal fibroblasts and in vitro human decidualized stromal fibroblasts.

Publication Title

Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE34109
Expression data from MMTV-PPARd mice, 1 week GW501516 treatment
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The role of murine peroxisome proliferator-activated receptor-delta (PPARd) in mammary tumorigenesis was assessed. Microarrays were used to analyse global gene expression to determine changes in MMTV-PPARd transgenic mice versus wild-type mice and the effect of GW501516.

Publication Title

PPARδ induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTOR activation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP090942
Term placenta tissue-level transcriptome
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We provide the tissue-level human placental transcriptomes from two term uncomplicated pregnancies. Tissue was collected at term C-section (no labor), from villous part of the placenta. Overall design: mRNA-seq of placenta from two term healthy pregnancies.

Publication Title

Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP144962
Identification of genes regulated by long noncoding RNA H19 in the ovary.
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

In order to identify genes regulated by long noncoding RNA H19 in the ovary, we performed RNA-Seq with WT and H19KO ovaries from 8-week old mice. Among the differentially expressed genes, we found anti-mullerian hormone (AMH), which potentially plays an important role in regulating ovarian follicular development, might be a target of H19 mediated regulation. Overall design: Ovaries were harvested from 8-week old WT and H19KO mice, followed by total RNA extraction, library preparation and RNA-seq analysis to compare gene expression profiles between WT and H19KO conditions.

Publication Title

A novel, noncoding-RNA-mediated, post-transcriptional mechanism of anti-Mullerian hormone regulation by the H19/let-7 axis.

Sample Metadata Fields

Age, Cell line, Subject

View Samples
accession-icon GSE23038
Normal prostate cells were immortalized and cultured for 650 days till several transformation hallmarks were observed
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Duplication of chromosomal arm 20q occurs in prostate, cervical, colon, gastric, bladder, melanoma, pancreas and breast cancer, suggesting that 20q amplification may play a key causal role in tumorigenesis. According to an alternative view, chromosomal instabilities are mainly a common side effect of cancer progression. To test whether a specific genomic aberration might serve as a cancer initiating event, we established an in vitro system that models the evolutionary process of early stages of prostate tumor formation; normal prostate cells were immortalized and cultured for 650 days till several transformation hallmarks were observed. Gene expression patterns were measured and chromosomal aberrations were monitored by spectral karyotype analysis at different times. Several chromosomal aberrations, in particular duplication of chromosomal arm 20q, occurred early in the process and were fixed in the cell populations, while other aberrations became extinct shortly after their appearance. A wide range of bioinformatic tools, applied to our data and to data from several cancer databases, revealed that spontaneous 20q amplification can promote cancer initiation. Our computational model suggests that deregulation of some key pathways, such as MAPK, p53, cell cycle regulation and Polycomb group factors, in addition to activation of several genes like Myc, AML, B-Catenin and the ETS family transcription factors, are key steps in cancer development driven by 20q amplification. Finally we identified 13 cancer initiating genes, located on 20q13, which were significantly overexpressed in many tumors, with expression levels correlated with tumor grade and outcome; these probably play key roles in inducing malignancy via20q amplification.

Publication Title

Amplification of the 20q chromosomal arm occurs early in tumorigenic transformation and may initiate cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17356
Expression data from prostate cancer epithelial cells from African American and European American men
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

African-American (AA) men experience increased risk of developing prostate cancers as well as increased mortality following treatment as compared to European-American (EA) men. The aim of our study was to identify biological factors with potential to predispose AA men to prostate tumor progression and metastasis.

Publication Title

Enhanced expression of SOS1 is detected in prostate cancer epithelial cells from African-American men.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49535
Effect of H19 Knockdown by siRNA on gene expression in C2C12 cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to characterize the global changes in gene expression in C2C12 cells due to siRNA knockdown of long non-coding RNA H19

Publication Title

The imprinted H19 lncRNA antagonizes let-7 microRNAs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7451
Primary Sjogren's syndrome and control whole saliva
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

10 saliva samples from patients with primary Sojgren's syndrome and 10 saliva samples from control subjects

Publication Title

Salivary proteomic and genomic biomarkers for primary Sjögren's syndrome.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE31352
Transcriptomic analysis of CT16 (PAGE5) function in A2058 and WM-266-4 melanoma cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina human-6 v1.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Melanoma-associated cancer-testis antigen 16 (CT16) regulates the expression of apoptotic and antiapoptotic genes and promotes cell survival.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact