refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 720 results
Sort by

Filters

Technology

Platform

accession-icon GSE32618
Expression data of mouse eSZ and GP cells with or without EWS-FLI1
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Ewings sarcoma is highly malignant bone tumor that involves childhood and adolescent, and its nature has not been well understood. To clarify its cellular origin and the mechanisms of tumorigenesis, we used ex vivo approach to create a murine model for Ewings sarcoma. The osteochondrogenic progenitors derived from the embryonic superficial zone (eSZ, designated as FZ in the data set) of murine long bones at late gestation were purified by microdissection, introduced with EWS-FLI1 or EWS-ERG retroviruses and transplanted into nude mice. Ewings sarcoma-like small round cell sarcoma developed at 100% penetrance, whereas tumor induction was less effective when growth place (GP)-derived cells were used. The different response of gene expression to EWS-FLI1 between eSZ and GP cells suggests importance of the specific cellular context for EWS-FLI1 to induce Ewings sarcoma. The Wnt/-catenin pathway was involved in close relationship to the cellular context, with Dkk2 and Wipf1 as important downstream modulators. Furthermore, gene expression profiling revealed similarity between our models and human Ewings sarcoma. These results indicate that Ewings sarcoma originates from the embryonic osteochondrogenic progenitor.

Publication Title

Ewing's sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE32615
Expression data of mouse Ewing's sarcoma
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Ewings sarcoma is highly malignant bone tumor that involves childhood and adolescent, and its nature has not been well understood. To clarify its cellular origin and the mechanisms of tumorigenesis, we used ex vivo approach to create a murine model for Ewings sarcoma. The osteochondrogenic progenitors derived from the facial zone (FZ) of murine long bones at late gestation were purified by microdissection, introduced with EWS-FLI1 or EWS-ERG retroviruses and transplanted into nude mice. Ewings sarcoma-like small round cell sarcoma developed at 100% penetrance, whereas tumor induction was less effective when growth place (GP)-derived cells were used. The different response of gene expression to EWS-FLI1 between FZ and GP cells suggests importance of the specific cellular context for EWS-FLI1 to induce Ewings sarcoma. The Wnt/-catenin pathway was involved in close relationship to the cellular context, with Dkk2 and Wipf1 as important downstream modulators. Furthermore, gene expression profiling revealed similarity between our models and human Ewings sarcoma. These results indicate that Ewings sarcoma originates from the embryonic osteochondrogenic progenitor.

Publication Title

Ewing's sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17666
Regulatory Role for PC-TP/StarD2 in the Metabolic Response to Peroxisome Proliferator Activated Receptor Alpha (PPAR)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Phosphatidylcholine transfer protein (PC-TP, a.k.a StarD2) is abundantly expressed in liver and is regulated by PPAR. When fed the synthetic PPAR ligand fenofibrate, Pctp-/- mice exhibited altered lipid and glucose homeostasis. Microarray profiling of liver from fenofibrate fed wild type and Pctp-/- mice revealed differential expression of a broad array of metabolic genes, as well as their regulatory transcription factors. Because its expression controlled the transcriptional activities of both PPAR and HNF4 in cell culture, the broader impact of PC-TP on nutrient metabolism is most likely secondary to its role in fatty acid metabolism.

Publication Title

Regulatory role for phosphatidylcholine transfer protein/StarD2 in the metabolic response to peroxisome proliferator activated receptor alpha (PPARalpha).

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE103059
IRF1 is a transcriptional regulator of ZBP1 promoting NLRP3 inflammasome activation and cell death during influenza virus infection
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Innate immune sensing of influenza A virus (IAV) induces activation of various immune effector mechanisms including the NLRP3 inflammasome and programmed cell death pathways. Although type I IFNs are identified as key mediators of inflammatory and cell death responses during IAV infection, the involvement of various IFN-regulated effectors in facilitating these responses are less studied. Here, we demonstrate the role of interferon regulatory factor 1 (IRF1) in promoting NLRP3 inflammasome activation and cell death during IAV infection. IRF1 functions as a transcriptional regulator of Z-DNA binding protein 1 (ZBP1, also called as DLM1/DAI), a key molecule mediating IAV-induced inflammatory and cell death responses. Therefore, our study identified IRF1 as an upstream regulator of NLRP3 inflammasome and cell death during IAV infection and further highlights the complex and multilayered regulation of key molecules controlling inflammatory response and cell fate decisions during infections.

Publication Title

IRF1 Is a Transcriptional Regulator of ZBP1 Promoting NLRP3 Inflammasome Activation and Cell Death during Influenza Virus Infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61120
Decreased expression of cell proliferation-related genes in clonally derived skin fibroblasts from children with Silver-Russell syndrome is independent of the degree of 11p15 ICR1 hypomethylation
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

The in-vitro analysis of the hypomethylation of the imprinting control region 1 (ICR1) within the IGF2/H19 locus is challenged by the mosaic distribution of the epimutation in tissues from children with Silver-Russell syndrome (SRS).

Publication Title

Decreased expression of cell proliferation-related genes in clonally derived skin fibroblasts from children with Silver-Russell syndrome is independent of the degree of 11p15 ICR1 hypomethylation.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE24430
Ischemic Pre- and Post Conditioning has pronounced effects on Gene Expression Profiles in the Rat Liver after Ischemia/Reperfusion
  • organism-icon Rattus norvegicus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Ischemia/reperfusion injuries is a known complication to hepatic surgery. Ischemic pre- (IPC) and postconditioning (IPO) protects the liver against ischemia/reperfusion-injuries. Expression profiling were performed on liver biopsies seeking to identify molecular mediators of the protective properties.

Publication Title

Ischemic pre- and postconditioning has pronounced effects on gene expression profiles in the rat liver after ischemia/reperfusion.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE32409
Expression data from after-ripened wheat seeds imbibed in ABA
  • organism-icon Triticum aestivum
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Wheat Genome Array (wheat)

Description

Wheat seed germination and seminal root growth can be inhibited by treatment with exogenous ABA

Publication Title

Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57352
Expression data from Xenopus embryos treated with TTNPB (RAR-agonist), AGN193109 (RAR-antagonist), or Control Vehicle
  • organism-icon Xenopus laevis
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Description

Percellome analysis of whole Xenopus embryos at developmental stage 18

Publication Title

Active repression by RARγ signaling is required for vertebrate axial elongation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10796
Identification of genes that restrict astrocyte differentiation of midgestational neural precursor cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

During development of the mammalian central nervous system (CNS), neurons and glial cells (astrocytes and oligodendrocytes) are generated from common neural precursor cells (NPCs). However, neurogenesis precedes gliogenesis, which normally commences at later stages of fetal telencephalic development. Astrocyte differentiation of mouse NPCs at embryonic day (E) 14.5 (relatively late gestation) is induced by activation of the transcription factor STAT3, whereas at E11.5 (mid-gestation) NPCs do not differentiate into astrocytes even when stimulated by STAT3-activating cytokines such as leukemia inhibitory factor (LIF). This can be explained in part by the fact that astrocyte-specific gene promoters are highly methylated in NPCs at E11.5, but other mechanisms are also likely to play a role. We therefore sought to identify genes involved in the inhibition of astrocyte differentiation of NPCs at midgestation. We first examined gene expression profiles in E11.5 and E14.5 NPCs, using Affymetrix GeneChip analysis, applying the Percellome method to normalize gene expression level. We then conducted in situ hybridization analysis for selected genes found to be highly expressed in NPCs at midgestation. Among these genes, we found that N-myc and high mobility group AT-hook 2 (Hmga2) were highly expressed in the E11.5 but not the E14.5 ventricular zone of mouse brain, where NPCs reside. Transduction of N-myc and Hmga2 by retroviruses into E14.5 NPCs, which normally differentiate into astrocytes in response to LIF, resulted in suppression of astrocyte differentiation. However, sustained expression of N-myc and Hmga2 in E11.5 NPCs failed to maintain the hypermethylated status of an astrocyte-specific gene promoter. Taken together, our data suggest that astrocyte differentiation of NPCs is regulated not only by DNA methylation but also by genes whose expression is controlled spatio-temporally during brain development.

Publication Title

Identification of genes that restrict astrocyte differentiation of midgestational neural precursor cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40666
Regulating type 1 IFN effects in CD8 T cells during viral infections: changing STAT4 and STAT1 expression for function
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Type 1 IFNs can conditionally activate all of the signal transducers and activators of transcription molecules (STATs), including STAT4. The best-characterized signaling pathways use STAT1, however, and type 1 IFN inhibition of cell proliferation is STAT1 dependent. We report that type 1 IFNs can basally stimulate STAT1- and STAT4- dependent effects in CD8 T cells, but that CD8 T cells responding to infections of mice with lymphocytic choriomenigitis virus have elevated STAT4 and lower STAT1 expression with significant consequences for modifying the effects of type 1 IFN exposure. The phenotype was associated with preferential type 1 IFN activation of STAT4 as compared to STAT1. Stimulation through the TCR induced elevated STAT4 expression, and STAT4 was required for peak expansion of antigen-specific CD8 T cells, low STAT1 levels, and resistance to type 1 IFN-mediated inhibition of proliferation. Thus, a mechanism is discovered for regulating the consequences of type 1 IFN exposure in CD8 T cells, with STAT4 acting as a key molecule in driving optimal antigen-specific responses and overcoming STAT1-dependent inhibition of proliferation.

Publication Title

Regulating type 1 IFN effects in CD8 T cells during viral infections: changing STAT4 and STAT1 expression for function.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact