refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 562 results
Sort by

Filters

Technology

Platform

accession-icon GSE138078
PRRX1 overexpression in MDA-MB-231 breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

To investigate downstream targets of PRRX1, we used MDA-MB-231 (MDA231) breast cancer cells which express low level of PRRX1 to generate a stable cell line where human PRRX1 was ectopically overexpressed

Publication Title

A gene regulatory network to control EMT programs in development and disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19726
Expression, MeDIP and ChIP-on-chip data from normal Prostate epithelial cells (PrEC) and the LNCaP cancer cell line
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Human Promoter 1.0R Array (hsprompr)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE19725
Expression data from normal Prostate epithelial cells (PrEC) and the LNCaP cancer cell line
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To identify genomic regions which display concordant gene expression in prostate cancer, we performed expression profiling of normal prostate epithelial cells (PrEC) and the prostate cancer cell line LNCaP.

Publication Title

Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE26488
Differential Gene Expression in HDAC7-Deficient and Transgenic Thymocytes
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Abstract of publicaton: CD4/CD8 double-positive (DP) thymocytes express the transcriptional repressor Histone Deacetylase 7 (HDAC7), a class IIa HDAC that is exported from the cell nucleus after T cell receptor (TCR) engagement. Through signal-dependent nuclear export, class IIa HDACs such as HDAC7 mediate signal-dependent changes in gene expression that are important to developmental fate decisions in multiple tissues. We report that HDAC7 is exported from the cell nucleus during positive selection in thymocytes, and regulates genes mediating the coupling between TCR engagement and downstream events that determine cell survival. Thymocytes lacking HDAC7 are inefficiently positively selected due to a severely shortened lifespan and exhibit a truncated repertoire of TCR Jalpha segments. The expression of multiple important mediators and modulators of the response to TCR engagement is altered in HDAC7-deficient thymocytes, resulting in increased tonic MAP kinase activity that contributes to the observed loss of viability. Remarkably, the activity of Protein Kinase D, the kinase that mediates nuclear export of HDAC7 in response to TCR signaling, is also increased in HDAC7-deficient thymocytes, suggesting that HDAC7 nuclear export governs a self-sustaining auto-excitatory loop. These experiments add to the understanding of the life/death decision in thymic T cell development, define a novel function for class IIa HDACs, and point to a novel feed-forward mechanism whereby these molecules regulate their own state and mediate stable developmental transitions. Title of manuscript: Nuclear Export of Histone Deacetylase 7 During Thymic Selection Mediates Immune Self-tolerance. abstract of manuscript: Histone Deacetylase 7 (HDAC7) is a TCR signal-dependent regulator of differentiation that is highly expressed in CD4/CD8 double-positive (DP) thymocytes. Here we examine the effect of blocking TCR-dependent nuclear export of HDAC7 during thymic selection, through expression of a signal-resistant mutant of HDAC7 (HDAC7-?P) in thymocytes. We find that HDAC7-?P Transgenic thymocytes exhibit a profound block in negative thymic selection, but can still undergo positive selection, resulting in the escape of autoreactive T cells into the periphery. Gene expression profiling reveals a comprehensive suppression of the negative selection-associated gene expression program in DP thymocytes, associated with a defect in the activation of MAP kinase pathways by TCR signals. The consequence of this block in vivo is a lethal autoimmune syndrome involving the exocrine pancreas and other abdominal organs. These experiments establish a novel molecular model of autoimmunity and cast new light on the relationship between thymic selection and immune self-tolerance. Goal of Microarray experiment: We did these experiments to determine how alteration of the function of HDAC7, a site-specific and signal-dependent repressor of transcription, changes gene expression in CD4/CD8 DP thymocytes.

Publication Title

Histone deacetylase 7 regulates cell survival and TCR signaling in CD4/CD8 double-positive thymocytes.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE41572
Molecular mechanisms of pulmonary response progression in crystalline silica exposed rats
  • organism-icon Rattus norvegicus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

The capability to detect target organ toxicity as well as to determine the molecular mechanisms underlying such toxicity by employing surrogate biospecimens that can be obtained by a non-invasive or minimally invasive procedure has significant advantage in occupational toxicology. Pulmonary toxicity and global gene expression profile in the lungs, peripheral blood and bronchoalveolar lavage (BAL) cells were determined in rats at 44-weeks following pulmonary exposure to crystalline silica (15 mg/m3, 6-hours/day, 5 days). A significant elevation in lactate dehydrogenase activity and albumin content observed in the BAL fluid suggested the induction of pulmonary toxicity in the silica exposed rats. Similarly, the observation of histological alterations, mainly type II pneumocyte hyperplasia and fibrosis, in the lungs further confirmed silica-induced pulmonary toxicity in the rats. A significant increase in the number of neutrophils and elevated monocyte chemotactic protein 1 level in the BAL fluids suggested silica-induced pulmonary inflammation in the rats. Determination of global gene expression profile in the lungs, BAL cells, and peripheral blood of the silica exposed rats identified 144, 236, and 51 significantly differentially expressed genes (SDEGs), respectively, compared with the corresponding control samples. Bioinformatics analysis of the SDEGs demonstrated a remarkable similarity in the biological functions, molecular networks and canonical pathways that were significantly affected by silica exposure in the lungs, BAL cells and blood of the rats. Induction of inflammation was identified, based on the bioinformatics analysis of the significantly differentially expressed genes in the lungs, blood and BAL cells, as the major molecular mechanism underlying the silica-induced pulmonary toxicity. The findings of our study demonstrated the potential application of global gene expression profiling of peripheral blood and BAL cells as a valuable minimally invasive approach to study silica-induced pulmonary toxicity in rats.

Publication Title

Molecular mechanisms of pulmonary response progression in crystalline silica exposed rats.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE31365
Small-molecule inhibitor JQ1 effect on multiple myeloma cell lines
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Pathologic activation of c-Myc plays a central role in pathogenesis of several neoplasias, including multiple myeloma. However, therapeutic targeting of c-Myc has remained elusive due to its lack of a clear ligand-binding domain. We therefore targeted c-Myc transcriptional function by another means, namely the disruption of chromatin-dependent signal transduction. Members of the bromodomain and extra-terminal (BET) subfamily of human bromodomain proteins (BRD2, BRD3 and BRD4) associate with acetylated chromatin and facilitate transcriptional activation by increasing the effective molarity of recruited transcriptional activators. Notably, BRD4 marks select M/G1 genes in mitotic chromatin for transcriptional memory and direct post-mitotic transcription, via direct interaction with the positive transcription elongation factor complex b (P-TEFb). Because c-Myc is known to regulate promoter-proximal pause release of Pol II, also through the recruitment of P-TEFb, we evaluated the selective small-molecule inhibitor of BET bromodomains, JQ1, as a chemical probe to interrogate the role of BET bromodomains in Myc-dependent transcription and to explore their role as therapeutic targets in c-Myc-driven neoplasias.

Publication Title

BET bromodomain inhibition as a therapeutic strategy to target c-Myc.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE83971
Expression data from hMSC-TERT4 cells during osteoblast differentiation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Differentiation of human skeletal stem cells (hMSC) into osteoblasts is regulated by a few well described transcription factors. Our study used clustering and gene expression data to identify a novel transcription factor. ZNF25, which we showed is involved in osteoblast differentiation.

Publication Title

Transcription factor ZNF25 is associated with osteoblast differentiation of human skeletal stem cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE15553
Enhanced differentiation of hESCs into multipotential mesodermal stem cells by inhibition of TGF-b signaling by using SB
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Directing differentiation of human embryonic stem cells (hESC) into specific cell types using an easy and reproducible protocol is a perquisite for the clinical use of hESC in regenerative medicine protocols. Here, we report the generation of mesodermal cells with differentiation potential to myocytes, osteoblasts, chondrocytes and adipocytes. We demonstrate that during hESC differentiation as embryoid bodies (EB), inhibition of TGF-b/Activin/Nodal signaling using SB-431542 (SB) markedly up-regulated paraxial mesodermal markers (TBX6, TBX5), early myogenic transcriptional factors (Myf5, Pax7) as well as myocyte committed markers (NCAM, CD34, Desmin, MHC (fast), alpha-smooth muscle actin, Nkx2.5, cTNT). Establishing EB outgrowth cultures (SB-OG) in the presence of SB (1 uM) led to further enrichment of cells expressing markers for myocyte progenitor cell: CD34+ (33%), NCAM+ (CD56) (73%), PAX7 (25%) and mature myocyte proteins (MYOD1, tropomyocin, fast MHC an

Publication Title

Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE36688
Expression data from sorted interfollicular basal cells (alpha6 integrin-high/CD34-neg) from K14CREER and InvCREER/RosaYFP induced mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The skin interfollicular epidermis (IFE) is the first barrier against the external environment and its maintenance is critical for survival. Two seemingly opposite theories have been proposed to explain IFE homeostasis. One posits that IFE is maintained by a long-lived slow-cycling stem cell (SC) population that give rise to short-lived transit-amplifying (TA) cell progeny, while the other suggests that homeostasis is achieved by a single committed progenitor (CP) that balances stochastic fate. Here, we probed the cellular heterogeneity within the IFE using two different inducible CREER targeting IFE progenitors. Quantitative analysis of clonal fate data and proliferation dynamics demonstrate the existence of two distinct proliferative cell compartments composed of slow-cycling SC and CP, both of which undergo population asymmetric self-renewal. However, following wounding, only SCs contribute substantially to the repair and long-term regeneration of the tissue, while CP cells make a minimal and transient contribution.

Publication Title

Distinct contribution of stem and progenitor cells to epidermal maintenance.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP093382
Transcriptome profiling (RNA-seq) of CREBBP+/+ and CREBBP+/- clones of U2932 DLBCL cell line
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: Diffuse large B cell lymphomas (DLBCL) frequently harbor mutations in the histone acetyltransferase CREBBP, however their functional contribution to lymphomagenesis remains largely unknown. This study aims at elucidating and characterizing the molecular pathways affected by mutations in CREBBP. Methods: U2932, a DLBCL cell line that has wild type expression of CREBBP was manipulated by CRISPR-Cas9 strategy to mutate one allele of CREBBP and examine the pathways affected. RNA was isolated using the NucleoSping RNA Kit (Macherey-Nagel) from five wild type (CREBBP+/+) and five heterozygous clones (CREBBP+/-). RNA quality was assessed by Bioanalyzer 2100 followed by library preparation using the TruSeq RNA Sample Prep Kit v4 (Illumina). Sequencing was subsequently performed on the Illumina HiSeq 2500 instrument. RNA-seq reads were quality-checked with fastqc, which computes various quality metrics for the raw reads. RNA-seq reads were mapped to the GRCh38 reference human genome using STAR and reads were counted according to Ensembl gene annotation using the featureCounts function in the Rsubread Bioconductor package. Statistical analysis of differential expression was conducted with the DESeq2 package. Overall design: Trascriptomic profiles of CREBBP+/+ and CREBBP+/- clones were generated by deep sequencing.

Publication Title

Inactivation of CREBBP expands the germinal center B cell compartment, down-regulates MHCII expression and promotes DLBCL growth.

Sample Metadata Fields

Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact