refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 354 results
Sort by

Filters

Technology

Platform

accession-icon GSE100176
Myocardial glycolysis and gene expression in the adult mouse heart
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The heart uses primarily fatty acids and glucose for deriving energy. The majority of energy in the healthy heart derives from fat utilization, with the remainder coming primarily from the catabolism of glucose. Classical studies by Randle and colleagues describe the ability of the heart to switch its mode of utilization facilely and reversibly between glucose and fatty acids (myocardial glucose-fatty acid cycle or Randle cycle). However, under conditions of pathological stress, reliance of the heart on fatty acids decreases with a concomitant increase in reliance on glucose. It is unclear how such changes in metabolism regulate gene expression in the heart. Therefore, we examined how regulation of glycolysis at the level of phosphofructokinase modulates gene expression in the heart. We performed transcriptomic analysis of hearts from mice expressing either kinase-deficient phosphofructokinase 2 (GlycoLo) or phosphatase-deficient phosphofructokinase 2 (GlycoHi) under the control of the -MHC promoter, which restricted expression of the transgenes to the heart. Phosphofructokinase 2 only controls the ability of the myocyte to regulate abundance of a single metabolite, F-2,6-P2, which is an allosteric regulator of the rate-limiting and committed step in glycolysis. Parallel radiometric and metabolomic studies showed the expected increases or decreases in glycolytic flux along with diametrically opposite changes in fat metabolism, which is consistent with the myocardial glucose-fatty acid cycle. Transcriptomic analyses showed remarkable changes in gene transcription in these hearts, which indicates that glucose and/or fatty acid metabolism is a driver of transcriptional programs in the heart. Furthermore, glycolytic activity coordinately regulated numerous genes in the heart, including genes important for cardiac remodeling as well as genes regulating gluconeogenic and ancillary biosynthetic pathway activity. These findings reveal that glycolytic rate is a critical regulator of gene expression in the heart and can coordinate programs that modulate cardiac metabolism, growth, and hypertrophy.

Publication Title

Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP173554
In vivo RNA editing of point mutations via RNA-guided adenosine deaminases
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We investigated the specificity profiles of a variety of RNA guided adenosine deaminases while exploring roles of NLS/NES and hyperactive mutants via analysis of the transcriptome-wide off-target A->G editing effected by these tools. To this end, HEK 293T cells were transfected with each construct and analyzed by RNA-seq. Untransfected cells were included as controls. From each sample, we collected ~40 million uniquely aligned sequencing reads. We then used Fisher's exact test to quantify significant changes in A->G editing yields, relative to untransfected cells, at each reference adenosine site having sufficient read coverage. The number of sites with at least one A->G editing event detected in any of the samples was computed. Overall design: Study of transcriptome wide A->G off-targets arising due to the overexpression of a variety of RNA guided adenosine deaminases.

Publication Title

In vivo RNA editing of point mutations via RNA-guided adenosine deaminases.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP073495
RNA-sequencing of mouse knockout models for Cnp, Plp1, and Ugt8 in the frontal cortex and cerebellum
  • organism-icon Mus musculus
  • sample-icon 174 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Oligodendrocytes (OLs) and myelin are critical for normal brain function and they have been implicated in neurodegeneration. Human neuroimaging studies have demonstrated that alterations in axons and myelin occur early in Alzheimer's Disease (AD) course. However, the molecular mechanism underlying the role of OLs in AD remains largely unknown. In this study, we systematically interrogated OL-enriched gene networks constructed from large-scale genomic, transcriptomic, and proteomic data in human AD postmortem brain samples. These robust OL networks were highly enriched for genes associated with AD risk variants, including BIN1. We corroborated the structure of the AD OL coexpression and gene-gene interaction networks through ablation of genes identified as key drivers of the networks, including UGT8, CNP, MYRF, PLP1, NPC1, and NDGR1. Perturbations of these key drivers not only caused dysregulation in their associated network neighborhoods, but also mimicked pathways of gene expression dysregulation seen in human AD postmortem brain samples. In particular, the OL subnetwork controlled by the AD risk gene PSEN1 was strongly dysregulated in AD, suggesting a potential role of PSEN1 in disrupting the myelination pathway towards the onset of AD. In summary, this study built and systematically validated the first comprehensive molecular blueprint of OL dysregulation in AD, and identified key OL- and myelination-related genes and networks as potential candidate targets for the future development of AD therapies. Overall design: The mouse knockout models have been previously described for each of Ugt8 (Coetzee et al., 1996), Cnp (Lappe-Siefke et al., 2003), and Plp1 (Klugmann et al., 1997). For each of the two conditions studied (control and homozygous knockout mice), five mice of either sex were sacrificed at postnatal day 20 and brains were flashed-frozen until analysis. The frontal cortex (FC) and cerebellum (CBM) were dissected out and individually processed. RNA was isolated using Trizol reagent and processed using Ribo-Zero rRNA removal. RNA-sequencing was performed using the Illumina HiSeq2000 with 100 nucleotide paired-end reads. RNA-sequencing reads were mapped to the mouse genome (mm10, UCSC assembly) using Bowtie (version 2.2.3.0), TopHat (version 2.0.11), and SamTools (version 0.1.19.0) using a read length of 100. Reads were converted to counts at the gene level using HTSeq on the BAM files from TopHat2 using the UCSC known genes data set.

Publication Title

Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer's disease.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE93923
MLL is essential for NUP98-HOXA9-induced leukemia
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Rearrangements involving the NUP98 gene resulting in fusions to several partner genes occur in acute myeloid leukemia and myelodysplastic syndromes. This study demonstrates that the second FG repeat domain of the NUP98 moiety of the NUP98-HOXA9 fusion protein is important for its cell immortalization and leukemogenesis activities. We demonstrate that NUP98-HOXA9 interacts with MLL via this FG repeat domain and that, in the absence of MLL, NUP98-HOXA9-induced cell immortalization and leukemogenesis are severely inhibited. Molecular analyses indicate that MLL is important for the recruitment of NUP98-HOXA9 to the HOXA locus and for NUP98-HOXA9-induced HOXA gene expression. Our data indicate that MLL is crucial for NUP98-HOXA9 leukemia initiation.

Publication Title

MLL is essential for NUP98-HOXA9-induced leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23779
Genome-wide expression analysis comparing SKOV3ip1 and the taxane-resistant SKOV3TRip2
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina humanRef-8 v2.0 expression beadchip

Description

We sought to compare mRNA expression profiles between the parental SKOV3ip1 and taxane-resistant SKOV3TRip2 in order to determine what genes are mediating taxane resistance

Publication Title

Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54868
JAK/STAT coordinates cell proliferation during disc regeneration with Dilp8-mediated developmental delay in Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Regeneration of fragmented Drosophila imaginal discs occurs in an epimorphic manner, involving local cell proliferation at the wound site. Following disc fragmentation, cells at the wound site activate a restoration program through wound healing, regenerative cell proliferation and repatterning of the tissue. However, the interplay of signaling cascades, driving these early reprogramming steps, is not well understood. Here we profiled the transcriptome of regenerating cells in the early phase within twenty-four hours after wounding. We found that JAK/STAT signaling becomes activated at the wound site and promotes regenerative cell proliferation in cooperation with Wingless (Wg) signaling. In addition, we demonstrated that the expression of Drosophila insulin-like peptide 8 (dilp8), which encodes a paracrine peptide to delay the onset of pupariation, is controlled by JAK/STAT signaling in early regenerating discs. Our findings suggest that JAK/STAT signaling plays a pivotal role in coordinating regenerative disc growth with organismal developmental timing.

Publication Title

During Drosophila disc regeneration, JAK/STAT coordinates cell proliferation with Dilp8-mediated developmental delay.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon SRP055424
High-throughput RNA-sequencing analysis in human glioma stem cell
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Glioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs), which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. To investigate gene expression including lncRNA (long non-coding RNA) in GSC, we have performed high-throughput RNA-sequencing (RNA-seq) experiment using Illumina GAIIx. Overall design: Profiles of gene expression including lncRNA in GSC were generated by RNA-seq using Illumina GAIIx.

Publication Title

Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42349
Integrative genomics of gene regulation by estrogen receptors and and coregulators
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrative genomics of gene and metabolic regulation by estrogen receptors α and β, and their coregulators.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE42347
Integrative genomics of gene and metabolic regulation by estrogen receptors and and coregulators [expression]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The closely related transcription factors (TFs), estrogen receptors ER and ER, regulate divergent gene expression programs and proliferative outcomes in breast cancer. Utilizing MCF-7 breast cancer cells with ER, ER, or both receptors as a model system to define the basis of differing response specification by related TFs, we show that these TFs and their key coregulators, SRC3 and RIP140, generate overlapping as well as unique chromatin-binding and transcription-regulating modules.

Publication Title

Integrative genomics of gene and metabolic regulation by estrogen receptors α and β, and their coregulators.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE9936
Expression data from human breast cancer cells (MCF-7) coexpressing ERalpha and Erbeta, treated with phytoestrogens
  • organism-icon Homo sapiens
  • sample-icon 104 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We used microarrays to detail the global transcriptional response mediated by ERalpha or ERbeta to the phytoestrogen genistein in the MCF-7 human breast cancer cell model.

Publication Title

Estrogen Receptors alpha and beta as determinants of gene expression: influence of ligand, dose, and chromatin binding.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact