refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 156 results
Sort by

Filters

Technology

Platform

accession-icon SRP111130
Genetic deletion or small molecule inhibition of the arginine methyltransferase PRMT5 exhibit anti-tumoral activity in mouse models of MLL-rearranged AML
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The hematological malignancies classified as Mixed Lineage leukemias (MLL) harbor fusions of the MLL1 gene to partners that are members of transcriptional elongation complexes. MLL-rearranged leukemias are associated with extremely poor prognosis and response to conventional therapies and efforts to identify molecular targets are urgently needed. Using mouse models of MLL-rearranged acute myeloid leukemia (AML), here we show that genetic inactivation or small molecule inhibition of the protein arginine methyltransferase PRMT5 exhibit anti-tumoral activity in MLL-fusion protein driven transformation. Genome wide transcriptional analysis revealed that inhibition of PRMT5 methyltransferase activity overrides the differentiation block in leukemia cells without affecting the expression of MLL-fusion direct oncogenic targets. Furthermore, we find that this differentiation block is mediated by transcriptional silencing of the cyclin-dependent kinase inhibitor p21 (CDKN1a) gene in leukemia cells. Our study provides pre-clinical rationale for targeting PRMT5 using small molecule inhibitors in the treatment of leukemias harboring MLL-rearrangements. Overall design: RNA-seq data from 72h-treated DMSO and EPZ 015666 (PRMT5i) MLL-ENL/NrasG12D leukemia cells, three independent replicates.

Publication Title

Genetic deletion or small-molecule inhibition of the arginine methyltransferase PRMT5 exhibit anti-tumoral activity in mouse models of MLL-rearranged AML.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE30174
Molecular-genetic correlates of fatigue in cancer patients receiving localized external beam radiation therapy
  • organism-icon Homo sapiens
  • sample-icon 80 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The etiology behind cancer-related fatigue (CRF) is currently unknown. The physiological mechanisms of CRF are based on limited evidence that genetic factors, energy expenditure, metabolism, aerobic capacity, and the individual's immune response to inflammation are responsible for the experience of CRF. Gene expression profiling using microarray analysis from white blood cells of men with non-metastatic prostate cancer shows significant, differential expression of 463 probesets during localized external beam radiation therapy (EBRT). Pathway analysis shows a central role of SNCA (alpha-synuclein gene) among these differentially expressed probesets. Significant expression of SNCA was confirmed by qPCR (p<.001) and ELISA (p<.001) over time during EBRT. A significant correlation was noted between averaged fatigue scores and delta CT values of SNCA expression using confirmatory qPCR over time during EBRT (R=-.90, p=.006). Development of fatigue experienced by these men during EBRT may be mediated by SNCA expression. Pathways related to alpha-synuclein may serve as useful biomarkers to understand the mechanisms behind the development of fatigue.

Publication Title

Upregulation of α-synuclein during localized radiation therapy signals the association of cancer-related fatigue with the activation of inflammatory and neuroprotective pathways.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Treatment, Subject

View Samples
accession-icon GSE9566
A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function

Publication Title

A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE81959
Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice
  • organism-icon Mus musculus
  • sample-icon 72 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Calorie restriction (CR) is the most robust non-genetic intervention to universally delay the onset of age-related diseases and extend mean and maximum lifespan. However, species, strain, sex, diet, age of onset, and level of CR are emerging as important variables to consider for a successful CR response. Here, we investigated the role of strain, sex and level of CR on outcomes of health and survival in mice. Response to CR varied from lifespan extension to no effect on survival, while consistently delaying the onset and impact of diseases independently of strain, sex and level of dietary restriction. CR led to transcriptional and metabolomics changes in the liver indicating anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. Additionally, CR prevented the age-associated decline in the proteostasis network. Further, CR increased mitochondrial number and preserved their ultrastructure and function with age. Abrogation of mitochondrial function by deletion of fumarate hydratase or malate dehydrogenase 2 negated the life-prolonging effects of CR in yeast and worms. In F1 hybrid strains of mice, the lifespan response to CR tracked with the dam, indicating that the mitochondrial haplotype is an important regulator of CR. Our data illustrate the complexity of the CR responses within a single animal species in the context of aging, with a clear separation of outcomes related to health and survival, highlighting the complexities of translation of CR into human interventions.

Publication Title

Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP041826
GPBAR1 agonism has a broad impact on blocking macrophage activation
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Human D14+ / CD16+ monocytes were treated with GPBAR1 agonists or controls, and were stimulated with interferon gamma and LPS. At 6 and 24 hours, the cells were profiled by RNAseq Overall design: 40 total samples, 5 per group with eight groups. Individual donors used for multiple comparisons, so paired analysis is possible. Control samples include unstimulated cells, and stimulated cells treated with vehicle control (DMSO).

Publication Title

A GPBAR1 (TGR5) small molecule agonist shows specific inhibitory effects on myeloid cell activation in vitro and reduces experimental autoimmune encephalitis (EAE) in vivo.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP197580
Group 3 innate lymphoid cells mediate early protective immunity against Mycobacterium tuberculosis
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We report the phenotype of human lung ILC2 and ILC3 populations from individuals with tuberculosis (TB) and non-TB cancer controls. We find that ILC2s demonstrate moderate transcriptional differences in TB infection, whereas ILC3s demonstrate large differences. Overall design: ILC2s and ILC3s were purified by FACS from lung biopsies from TB infected lung tissue and peripheral healthy lung tissue from individuals with cancer. Low-input RNA-seq was performed on 1-3 replicates (dependent on cell number) on 5 individuals with TB infection and 2 controls.

Publication Title

Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE8312
Enhancing integrin alpha7 expression effect on myoblast transcription
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Publication Title

Increasing alpha 7 beta 1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8313
integrin alpha7 overexpression effects on skeletal muscle transcriptions
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Analysis of integrin alpha7 transgenic mice skeletal muscle transcription profiles comparing to wild type controls. Integrin alpha7 is the major laminin binding integrin in muscle cells. Enhancing its expression has been demonstrated to alleviate pathology in a murine model of Duchenne muscular dystrophy. Results of this study provide insights into the effects of increasing integrin alpha7 expression on skeletal muscle transcription and physiology in vivo. This analysis also evaluates any potential possible side effects associate with enhancing integrin alpha7 in skeletal muscle.

Publication Title

Increasing alpha 7 beta 1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE79040
RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip

Description

Examination of gene expression patterns in lineage negative FLT3-ITD and pMIG-transduced BM cells via microarray study.

Publication Title

RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32982
Androgen regulated gene expression in human prostate
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Androgens are a prequisite for the development of human prostate and prostate cancer. Androgen action is mediated via androgen receptor. Androgen ablation therapy is used for the treatment of metastasized prostate cancer. The aim of the study was to identify genes differentially expressed in benign human prostate, prostate cancer and in prostate tissue three days after castration. These genes are potential diagnostic and therapeutic targets for prostate cancer and benign prostatic hyperplasia.

Publication Title

Identification of androgen-regulated genes in human prostate.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact