refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 222 results
Sort by

Filters

Technology

Platform

accession-icon GSE103459
Expression date from WT RAW264.7 and HuR-deficient RAW264.7 stimulated with poly(I:C) using lipofectamine
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

HuR-deficient cells showed the decreased expression of genes involved in chemotaxis, cell proliferation and signal transduction.

Publication Title

Hu Antigen R Regulates Antiviral Innate Immune Responses through the Stabilization of mRNA for Polo-like Kinase 2.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE95278
Skin inflammation exacerbates food allergy symptoms in epicutaneously sensitized mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cutaneous exposure to food antigen through impaired skin barrier has been shown to induce epicutaneous sensitization, and thereby cause IgE-mediated food allergy.

Publication Title

Skin inflammation exacerbates food allergy symptoms in epicutaneously sensitized mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE25029
Ionizing radiation in GI tract of Tweak KO mice
  • organism-icon Mus musculus
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

TWEAK/Fn14 signaling may regulate the expression of genes involved in epithelial repair and mucosal inflammation. Comparing the gene signatures in WT and TWEAK KO mice will inform the biology of TWEAK/Fn14 pathway in the GI tract.

Publication Title

Interleukin-13 damages intestinal mucosa via TWEAK and Fn14 in mice-a pathway associated with ulcerative colitis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP131065
Effect of NORAD shRNA on A549 cells treated with TGF-beta
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

We evaluated the effect of NORAD (also known as LINC00657 or LOC647979) shRNA on TGF-beta induced changes in the gene expression in A549 cells by RNA-seq. Overall design: mRNA expression was determined in a lung adenocarcinoma cancer cell line A549 infected with NORAD shRNA-expressing lentiviral vector and treated with TGF-beta.

Publication Title

Long noncoding RNA NORAD regulates transforming growth factor-β signaling and epithelial-to-mesenchymal transition-like phenotype.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE143349
Snail and Twist expression in HMLE and MCF10A cells
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Snail and Twist are two EMT inducer, expression of Snail or Twist will induce EMT in HMLE and MCF10A cells. By introducing Snail or Twist in HMLE and MCF10A cells, which lack the expression of these two proteins, will identify the genes are induced during EMT.

Publication Title

Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE62319
HT29 and GATA6
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE62316
Gene expression profiles of HT29 cells in which GATA6 expression was suppressed.
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

GATA6 is a zinc finger transcription factor that is required for the proliferation, development and specific gene regulation in the gastrointestinal tract. We have recently reported that GATA6-mediated induction of the intestinal stem cell marker LGR5 is required for the tumorigenicity of colon cancer cells. However, knockdown of LGR5, unlike GATA6, does not affect the proliferation of these cells under adherent conditions. Here we show that REG4, a member of the regenerating islet-derived (REG) family, is a target of GATA6. We further demonstrate that REG4 is downregulated by overexpression of miR-363, which suppresses GATA6 expression. Moreover, we show that GATA6-mediated activation of REG4 causes an acceleration of the growth of colon cancer cells under adherent conditions. These results suggest that GATA6 simultaneously activates the transcription of genes required for growth (REG4) and clonogenicity (LGR5), and the miR-363-GATA6-REG4/LGR5 pathway is critical for colorectal tumorigenesis.

Publication Title

REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE62317
Gene expression profiles of HT29 cells in which LGR5 expression was suppressed.
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

GATA6 is a zinc finger transcription factor that is required for the proliferation, development and specific gene regulation in the gastrointestinal tract. We have recently reported that GATA6-mediated induction of the intestinal stem cell marker LGR5 is required for the tumorigenicity of colon cancer cells. However, knockdown of LGR5, unlike GATA6, does not affect the proliferation of these cells under adherent conditions. Here we show that REG4, a member of the regenerating islet-derived (REG) family, is a target of GATA6. We further demonstrate that REG4 is downregulated by overexpression of miR-363, which suppresses GATA6 expression. Moreover, we show that GATA6-mediated activation of REG4 causes an acceleration of the growth of colon cancer cells under adherent conditions. These results suggest that GATA6 simultaneously activates the transcription of genes required for growth (REG4) and clonogenicity (LGR5), and the miR-363-GATA6-REG4/LGR5 pathway is critical for colorectal tumorigenesis.

Publication Title

REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE42234
C/EBPa controls acquisition and maintenance of adult hematopoietic stem cell quiescence
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In blood, the transcription factor C/EBPa is essential for myeloid differentiation and has been implicated in regulating self-renewal of fetal liver hematopoietic stem cells (HSCs). However, its function in adult HSCs is unknown. Here, using an inducible knockout model, we found that C/EBPa deficient adult HSCs underwent a pronounced expansion with enhanced proliferation, characteristics resembling fetal liver HSCs. Consistently, transcription profiling of C/EBPa deficient HSCs revealed a gene expression program similar to fetal liver HSCs. Moreover we observed that age-specific C/EBPa expression correlated with its inhibitory effect on the HSC cell cycle. Mechanistically, we identified N-Myc as a C/EBPa downstream target. C/EBPa upregulation during HSC transition from an active fetal state to a quiescent adult state was accompanied by down-regulation of N-Myc, and loss of C/EBPa resulted in de-repression of NMyc. Our data establish that C/EBPa acts as a molecular switch between fetal and adult states of HSC in part via transcriptional repression of the proto-oncogene N-Myc.

Publication Title

C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP058363
mRNA Sequencing of skeletal muscle genes in wildtype and BCATm (BCAT2) KO mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Consumption of a protein containing meal by a fasted animal promotes protein accretion in skeletal muscle, in part through leucine stimulation of protein synthesis and indirectly through repression of protein degradation mediated by its metabolite, a-ketoisocaproate. Mice lacking the mitochondrial branched-chain aminotransferase (BCATm/Bcat2), that interconverts leucine and a-ketoisocaproate, exhibit elevated protein turnover. Here, the transcriptomes of gastrocnemius muscle from BCATm knockout (KO) and wildtype mice were compared using Next Generation RNA-Sequencing (RNA-Seq) to identify potential adaptations associated with their persistently altered nutrient signaling. Statistically significant changes in the abundance of 1486/~39,010 genes were identified. Bioinformatics analysis of the RNA-Seq data indicated that pathways involved in protein synthesis (eIF2, mTOR, eIF4 and p70S6K pathways including 40S and 60S ribosomal proteins), protein breakdown (e.g., ubiquitin mediated), and muscle degeneration (apoptosis, atrophy, myopathy and cell death) were up-regulated. Also in agreement with our previous observations, the abundance of mRNAs associated with reduced body size, glycemia, plasma insulin, and lipid signaling pathways were observed in BCATm KO mice. Consistently, genes encoding anaerobic and/or oxidative metabolism of carbohydrate, fatty acids and BCAAs were modestly but systematically reduced. Although there was no indication that muscle fiber type was different between KO and wildtype mice, a difference in the abundance of mRNAs associated with a muscular dystrophy phenotype was observed, consistent with the published exercise intolerance of these mice. The results suggest transcriptional adaptations occur in BCATm KO mice that along with altered nutrient signaling may contribute to their previously reported protein turnover, metabolic and exercise phenotypes. Overall design: Comparison of wildtype and BCATm KO gastrocnemius biological replicates

Publication Title

Global deletion of BCATm increases expression of skeletal muscle genes associated with protein turnover.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact