refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 52 results
Sort by

Filters

Technology

Platform

accession-icon GSE18047
Classical and/or alternative NF-kB pathway activation in multiple myeloma pathogenesis
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mutations involving the NFKB pathway are present in at least 17% of multiple myeloma (MM) tumors and 40% of MM cell lines (MMCL). These mutations, which are thought to be progression events, enable MM tumors to become less dependent on extrinsic bone marrow signals that activate NFKB. Studies on a panel of 50 MMCL provide some clarification of the mechanisms through which these mutations act and the significance of classical vs alternative activation of NFKB. First, only one mutation (NFKB2) selectively activates the alternative pathway, whereas several mutations (CYLD, NFKB1, TACI) selectively activate the classical pathway. However, most mutations affecting NIK level (NIK, TRAF2, TRAF3, cIAP1&2, CD40) activate the alternative but often both pathways. Second, we confirm the critical role of TRAF2 in regulating NIK degradation, whereas TRAF3 enhances but is not essential for cIAP1/2-mediated proteosomal degradation of NIK in MM.

Publication Title

Classical and/or alternative NF-kappaB pathway activation in multiple myeloma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE5450
Alveolar Epithelial Cell Injury with EBV Upregulates TGF-beta1 Expression
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix proteins deposition. Epstein - Barr virus (EBV) has previously been localised to alveolar epithelial cells of IPF patients. In this study we utilised a microarray based differential gene expression analysis strategy to identify potential molecular drivers of EBV associated lung fibrosis. We employed an alveolar epithelial cell line infected with EBV (A-Akata). Lytic phase infection induced in the A-Akata cells by TPA/BA treatment resulted in increase of TGFbeta1 and TIEG1 mRNA expression. Treatment of the A-Akata cells with ganciclovir,

Publication Title

Alveolar epithelial cell injury with Epstein-Barr virus upregulates TGFbeta1 expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP096177
Deep sequencing reveals novel Set7 networks
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Methyl-dependent regulation of transcription has expanded from a traditional focus on histones to encompass transcription factor modulation. While the Set7 lysine methyltransferase is associated with pro-inflammatory gene expression in vascular endothelial cells, genome-wide regulatory roles remain to be investigated. From initial characterization of Set7 as specific for methyl-lysine 4 of H3 histones (H3K4m1), biochemical activity toward non-histone substrates has revealed additional mechanisms of gene regulation. mRNA-Seq revealed transcriptional deregulation of over 8,000 genes in an endothelial model of Set7 knockdown. Gene ontology identified up-regulated pathways involved in developmental processes and extracellular matrix remodeling, whereas pathways regulating the inflammatory response as well as nitric oxide signaling were down-regulated. Chromatin maps derived from ChIP-Seq profiling of H3K4m1 identified several hundred loci with loss of H3K4m1 at gene regulatory elements associated with an unexpectedly subtle effect on gene expression. Transcription factor network analysis implicated six previously described Set7 substrates in mRNA-Seq changes, and we predict that Set7 post-translationally regulates other transcription factors associated with vascular endothelial gene expression through the presence of Set7 amino acid methylation motifs. We describe a role for Set7 in regulating developmental pathways and response to stimuli (inflammation/immune response) in human endothelial cells of vascular origin. Set7-dependent gene expression changes that occurred independent of H3K4m1 may involve transcription factor lysine methylation events. The method of mapping measured transcriptional changes to transcription factors to identify putative substrates with strong associations to functional changes is applicable to substrate prediction for other broad-substrate histone modifiers. Overall design: We used lentiviral delivered shRNA to knock down the expression of Set7 protein in HMEC-1 cells. As a control, we used a non-targeting shRNA. RNA-seq was performed in biological triplicate. Set7 knock down datasets are labeled “Set7KD” and non-targeting control datasets are labeled “NTC”

Publication Title

Deep sequencing reveals novel Set7 networks.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE13811
Analysis of gene expression response of CLL cells to co-culture with Nurse like cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In the marrow and lymphatic tissues, chronic lymphocytic leukemia (CLL) cells interact with accessory cells that constitute the leukemia microenvironment. In lymphatic tissues, CLL cells are interspersed with CD68+ nurselike cells (NLC) and T cells. However, the mechanism regulating co-localization of CLL cells and these accessory cells are largely unknown. To dissect the molecular cross-talk between CLL and NLC, we profiled the gene expression of CD19-purified CLL cells before and after co-culture with NLC. NLC co-culture induced high-level expression of B cell maturation antigen (BCMA) and two chemoattractants (CCL3, CCL4) by CLL cells. Supernatants from CLL-NLC co-cultures revealed high CCL3/CCL4 protein levels. B cell receptor triggering also induced a robust induction of CCL3 and CCL4 expression by CLL cells, which was almost completely abrogated by a specific Syc inhibitor, R406. High CCL3 and CCL4 plasma levels in CLL patients suggest that activation of this pathway plays a role in vivo. These studies reveal a novel mechanism of cross-talk between CLL cells and their microenvironment, namely the secretion of two T cell chemokines by CLL-NLC interaction and in response to BCR stimulation. Through these chemokines, CLL cells can recruit accessory cells, and thereby actively create a microenvironment that favors their growth and survival.

Publication Title

High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44968
Expression data from human multiple myeloma cells with or without IRE1-XBP1 silencing
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to develop gene signatures for XBP1 and IRE1 in myeloma cells to explore the role of this UPR/differentiation pathway in proteasome inhibitor resistance.

Publication Title

Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE69166
Lysosomal and phagocytic activity is increased in astrocytes during the progression of amyotrophic lateral sclerosis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The aim of the present study is to combine LCM and microarray analysis to study how astrocytes in the spinal cord of transgenic SOD1 G93A mice and their non-transgenic (NTg) littermates respond to stimuli determined by the presence of the human mutant protein throughout the evolution of the disease by looking at the symptomatic and late-stage disease time points.

Publication Title

Lysosomal and phagocytic activity is increased in astrocytes during disease progression in the SOD1 (G93A) mouse model of amyotrophic lateral sclerosis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE25861
Altered Gene Expression Profile of Microvascular Endothelium in Placentas from IUGR/Preeclamptic Pregnancies
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The placental microvasculature of the human fetus is essential for the efficient transfer of gases, nutrients and waste between the mother and fetus. Microvascular hypoplasia of the terminal villi is associated with the placental pathology observed in cases of severe Intra Uterine Growth Restriction (IUGR). We used novel methods to isolate a pure population of placental microvascular endothelial cells from control preterm placentas (n=3) and placenta complicated by severe IUGR (n=6) with superimposed preeclampsia (n=5). Distal placental villous tissue was collected to enrich for terminal villi. Tissue was minced, digested and placental microvascular endothelial cells (PlMEC) were positively selected using tocosylated magnetic Dynabeads labeled with Human Endothelial Antigen lectin. The purity of the PlMEC (95%) was assessed by CD31 immunocytochemistry. RNA was extracted from the PlMEC samples and also from 3 term placenta and subjected to Affymetrix microarray analysis (U133Plus2 array chips). Data from the 3 term placentas and 3 preterm PlMEC arrays was used to generate an endothelial cell specific gene profile. This profile was used to identify the endothelial genes differentially regulated in all 6 IUGR cases. BTNL9 and NTRK2 transcripts were upregulated and SAA1, GNAS and SLAMF1 transcripts were downregulated as relative to the preterm controls. These changes were validated by Real time PCR in the PlMEC samples. This novel study is the first to identify endothelial candidate genes that may play a role in the villous hypoplasia of severe IUGR. This work advances our understanding of the molecular defects in placental microvascular endothelial cells in normal and pathologic pregnancies.

Publication Title

A distinct microvascular endothelial gene expression profile in severe IUGR placentas.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE14011
Expression data from myeloma cell lines treated with 500 nM pristimerin or DMSO vehicle alone for 4 hours
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

As multiple myeloma tumors universally dysregulate cyclin D genes we conducted high-throughput chemical library screens for compounds that induce suppression of cyclin D2. The top-ranked compound was a natural triterpenoid, pristimerin.

Publication Title

Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NF-kappaB with antimyeloma activity in vitro and in vivo.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21480
Novel aspects of transcriptional regulation in the winter survival and maintenance mechanism of perennial woody plants, poplar.
  • organism-icon Populus trichocarpa
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

Winter survival and maintenance strategy is crucial in temperate woody plants. Here, we demonstrate novel aspects of the transcriptional regulations adopted by perennial tree species in winter/dormancy, employing a biochemical and whole transcriptome analysis. As expected, genes related to cold hardiness and defense are over-represented. Interestingly, carbohydrate biosynthesis and transport-related genes were very actively expressed in winter/dormancy. Further biochemical analyses verified the dormancy/winter transcription phenotype. Furthermore, dormancy/winter preferential expression of genes involved in the cell wall biosynthesis/modification, circadian rhythm, the indirect transcriptional regulation (RNA metabolism), and chromatin modification/remodeling were identified. Taken together, regulation of gene expression in the winter survival and maintenance may include not only controlled by promoter binding transcription factors but may also be regulated at the post-transcriptional and chromatin levels.

Publication Title

Novel aspects of transcriptional regulation in the winter survival and maintenance mechanism of poplar.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP067392
Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell tissue engineering
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

A goal of this project is to evaluate the integrin mRNA expression in human neural stem/progenitor cells (hNSPC) using high-throughput sequencing technologies. We found high levels of mRNA expression for the ß1, a7, a3, a6, ß5, aV, a5, and a9 integrins. This suggests that hNSPCs may express integrin receptors that can bind fibrinogen and laminin proteins. Overall design: mRNA profiles of hNSPCs from three different passages (12, 15, and 17) were generated by deep sequencing using Illumina HiSeq 2500.

Publication Title

Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact