refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 19 results
Sort by

Filters

Technology

Platform

accession-icon GSE1907
Sarcoidosis + Follow-up study
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

Sarcoidosis + Follow-up 6 month after

Publication Title

Functional genomics and prognosis in sarcoidosis--the critical role of antigen presentation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9493
Transcriptomic analyses of renal allograft biopsies reveal conserved rejection signatures and molecular pathways
  • organism-icon Homo sapiens
  • sample-icon 80 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the subseries listed below.

Publication Title

Analysis of independent microarray datasets of renal biopsies identifies a robust transcript signature of acute allograft rejection.

Sample Metadata Fields

Sex, Age, Subject

View Samples
accession-icon GSE9489
Analyses of heterogeneous renal allograft biopsies reveal conserved rejection signatures and molecular pathways I
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Specific early diagnosis of renal allograft rejection is gaining importance in the current trend to minimize and individualize immunosuppression. Gene expression analyses could contribute significantly by defining molecular Banff signatures. Several previous studies have applied transcriptomics to distinguish different classes of kidney biopsies. However, the heterogeneity of microarray platforms, clinical samples and data analysis methods complicates the identification of robust signatures for the different types and grades of rejection. To address these issues, a comparative meta-analysis was performed across five different microarray datasets of heterogeneous sample collections from two published clinical datasets and three own datasets including biopsies for clinical indications, protocol biopsies, as well as comparative samples from non-human primates (NHP). This work identified conserved gene expression signatures that can differentiate groups with different histopathological findings in both human and NHP, regardless of the technical platform used. The marker panels comprise genes that clearly support the biological changes known to be involved in allograft rejection. A characteristic dynamic expression change of genes associated with immune and kidney functions was observed across samples with different grades of CAN. In addition, differences between human and NHP rejection were essentially limited to genes reflecting interstitial fibrosis progression. This data set comprises all renal allograft biopsies for clinical indications from patients at Hpital Tenon, Paris (February 2003 until September 2004) and few respective patients from Hpital Bictre, Paris, Hpital Pellegrin, Bordeaux, and Hpital Dupuytren, Limoges, plus control normal kidney samples from Hpital Tenon, Paris, France (first batch).

Publication Title

Analysis of independent microarray datasets of renal biopsies identifies a robust transcript signature of acute allograft rejection.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE17861
Analyses of heterogeneous renal allograft biopsies reveal conserved rejection signatures and molecular pathways I, partB
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Specific early diagnosis of renal allograft rejection is gaining importance in the current trend to minimize and individualize immunosuppression. Gene expression analyses could contribute significantly by defining molecular Banff signatures. Several previous studies have applied transcriptomics to distinguish different classes of kidney biopsies. However, the heterogeneity of microarray platforms, clinical samples and data analysis methods complicates the identification of robust signatures for the different types and grades of rejection. To address these issues, a comparative meta-analysis was performed across five different microarray datasets of heterogeneous sample collections from two published clinical datasets and three own datasets including biopsies for clinical indications, protocol biopsies, as well as comparative samples from non-human primates (NHP). This work identified conserved gene expression signatures that can differentiate groups with different histopathological findings in both human and NHP, regardless of the technical platform used. The marker panels comprise genes that clearly support the biological changes known to be involved in allograft rejection. A characteristic dynamic expression change of genes associated with immune and kidney functions was observed across samples with different grades of CAN. In addition, differences between human and NHP rejection were essentially limited to genes reflecting interstitial fibrosis progression. This data set comprises all renal allograft biopsies for clinical indications from patients at Hpital Tenon, Paris (February 2003 until September 2004) and few respective patients from Hpital Bictre, Paris, Hpital Pellegrin, Bordeaux, and Hpital Dupuytren, Limoges, plus control normal kidney samples from Hpital Tenon, Paris, France (first batch).

Publication Title

Analysis of independent microarray datasets of renal biopsies identifies a robust transcript signature of acute allograft rejection.

Sample Metadata Fields

Sex, Age, Subject

View Samples
accession-icon GSE32473
Gene expression is differently affected by pimecrolimus and betamethasone in lesional skin of atopic dermatitis.
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Topical corticosteroids and calcineurin inhibitors are well known treatments of atopic dermatitis (AD), but differ in their efficacy and side effects. A study in AD patients has demonstrated that betamethasone valerate (BM) though clinically more efficient impaired skin barrier repair in contrast to pimecrolimus. Objective: The present study elucidates the mode of action of topical BM and pimecrolimus cream in AD.

Publication Title

Gene expression is differently affected by pimecrolimus and betamethasone in lesional skin of atopic dermatitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52777
PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE62500
PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies [expression array]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The polycomb repressive complex 2 (PRC2) exerts oncogenic effects in many tumour types1. However, loss-of-function mutations in PRC2 components occur in a subset of haematopoietic malignancies, sug- gesting that this complex plays a dichotomous and poorly understood role in cancer2,3. Here we provide genomic, cellular, and mouse mod- elling data demonstrating that the polycomb group gene SUZ12 func- tions as tumour suppressor in PNS tumours, high-grade gliomas and melanomas by cooperating with mutations in NF1. NF1 encodes a Ras GTPase-activating protein (RasGAP) and its loss drives cancer by activating Ras4. We show that SUZ12 loss potentiates the effects of NF1 mutations by amplifying Ras-driven transcription through effects on chromatin. Importantly, however, SUZ12 inactivation also triggers an epigenetic switch that sensitizes these cancers to bromodomain inhib- itors. Collectively, these studies not only reveal an unexpected con- nection between the PRC2 complex, NF1 and Ras, but also identify a promising epigenetic-based therapeutic strategy that may be exploited for a variety of cancers.

Publication Title

PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE14051
Expression signatures and cytogenetic aberrations in HPV16 E6, E7 and E6/E7-positive immortalized human epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of genetic/cytogenetic alterations and differentially expressed cellular genes in HPV16 E6, E7 and E6/E7 positive human foreskin keratinocytes

Publication Title

Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14052
Differentially expressed cellular genes in non-tumorigenic and tumorigenic HPV18 positive HeLa x fibroblast hybrid cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of genes differentially expressed in tumorigenic compared to non-tumorigenic, HPV18 positive cells

Publication Title

Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP043188
HeLa cell polyA- RNA-seq
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIlluminaHiSeq2000

Description

Coilin iCLIP data revealed 42 novel human snoRNAs of intronic origin. To validate their expression and estimate abundance of novel and annotated snoRNAs, we performed RNA-seq on polyA- and rRNA-depleted RNA isolated from HeLa cells. Results show that expression of novel snoRNAs is comparable to the previously annotated snoRNAs. Overall design: 1 replicate of RNA depleted of polyA and ribosomal RNA.

Publication Title

The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact