refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 320 results
Sort by

Filters

Technology

Platform

accession-icon SRP090348
Molecular architecture underlying fluid absorption by the developing inner ear
  • organism-icon Mus musculus
  • sample-icon 199 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Single-cell RNA-seq analysis of pre- and postnatal mouse endolymphatic sac demonstrates two types of differentiated cells distinguished by their mRNA expression signatures. Overall design: mRNA-seq profiles from 213 single cells from embryonic day 12.5, 16.5, postnatal day 5 and 30 mouse endolymphatic sac were analyzed

Publication Title

Molecular architecture underlying fluid absorption by the developing inner ear.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE25407
Expression data from breast tumors and reduction mammoplasty explants
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Breast tumorigenesis involves modulation of gene expression.

Publication Title

Nucleotide excision repair deficiency is intrinsic in sporadic stage I breast cancer.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE43798
Microarray of cardiac biventricle from PGC-1a-/-bf/f/MerCre mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The following abstract from the submitted manuscript describes the major findings of this work.

Publication Title

A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP150747
Identification of cell type specfici markers for type I and type II Hair cells in the mouse utricle using single cell RNAseq
  • organism-icon Mus musculus
  • sample-icon 112 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500, Illumina HiSeq 1000

Description

Single cell RNAseq analysis of hair cells isolated from the mouse utricle at three postnatal time points Overall design: Utricular hair cells were isolated at P12 (49 cells) and P100 (23 cells) and then combined with a previously published single cell data set (samples from GSE71982) containing 35 utricular hair cells isolated at P1 (Burns et al., 2015) The previously published single cell P1 samples have been re-normalized. These samples are included in this series and all processed data are available in the file ute_normalized_data.txt, available at the foot of this record.

Publication Title

Characterization of spatial and temporal development of Type I and Type II hair cells in the mouse utricle using new cell-type-specific markers.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE29899
Long non-coding RNAs regulate adipogenesis
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Long noncoding RNAs regulate adipogenesis.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE29897
Long non-coding RNAs regulate adipogenesis (Affymetrix)
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Adipogenesis involves the regulation of hundreds of genes by several well-studied proteins, but the role of long, noncoding RNAs in this process has not been defined. We track the regulation of hundreds of lncRNAs during adipocyte differentiation, and find several that are essential for this process.

Publication Title

Long noncoding RNAs regulate adipogenesis.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP007112
Long non-coding RNAs regulate adipogenesis (Illumina RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Adipogenesis involves the regulation of hundreds of genes by several well-studied proteins, but the role of long, noncoding RNAs in this process has not been defined. We track the regulation of hundreds of lncRNAs during adipocyte differentiation, and find several that are essential for this process. Overall design: We extractedbrown and white primary adipocytes and pre-adipocytes and profiled lncRNA expresssion via mRNA-Seq. We also profiled cultured, differentiated adipocytes to verify that we could recapitulate the adipocyte expression profile in preparation for a loss-of-function screen for essential adipogenic lincRNAs.

Publication Title

Long noncoding RNAs regulate adipogenesis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP076426
The rectal mucosal transcriptome of men who have sex with men (MSM) engaging in condomless receptive anal intercourse (CRAI) compared with men who have never engaged in anal intercourse (controls)
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

We report differences in mRNA gene expression in rectal biopsies from MSM compared to controls and for MSM timed with episodes of CRAI. Overall design: Rectal biopsies were obtained from MSM at two study timepoints: 1. after who abstaining from CRAI for >72 hours and 2.after engaing in CRAI within the last 24 hours. Rectal biopsies were also obtained from men who never engaged in AI.

Publication Title

Short Communication: Anatomic Site of Sampling and the Rectal Mucosal Microbiota in HIV Negative Men Who Have Sex with Men Engaging in Condomless Receptive Anal Intercourse.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP108039
Single-cell RNA-seq following APE1/Ref-1 knockdown in Pancreatic Ductal Adenocarcinoma
  • organism-icon Homo sapiens
  • sample-icon 89 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

APE1 was knocked down using siRNA in low passage patient-derived PDAC cells and the resulting cells, along with control cells were analysed using scRNA-seq to identify differentially expressed genes and pathways as a result of APE1 knock-down. Overall design: siRNA APE1 knock-down versus scrambled control, The SMARTer system was used to generate cDNA from 96 captured single cells. Unstranded 2x100bp reads were sequenced using a HiSeq2500 on rapid run mode in 1 lane.

Publication Title

APE1/Ref-1 knockdown in pancreatic ductal adenocarcinoma - characterizing gene expression changes and identifying novel pathways using single-cell RNA sequencing.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP157976
Acetyl-CoA carboxylase inhibition regulates microtubule dynamics and intracellular transport in cystic fibrosis epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In this study, we hypothesize that acetyl CoA carboxylase (ACC) is an important intermediate in Cystic fibrosis (CF) inflammatory signaling cascade. Here, we demonstrate that ACC inhibition mimics the cellular effects of ibuprofen promoting both redistribution of intracellular cholesterol and increased rates of microtubule reformation, while decreasing RhoA expression in CF epithelial cell models. Inhibiting ACC polymerization with citrate increases RhoA expression and decreases microtubule reformation rates in wild-type epithelial cells, suggesting pro-inflammatory signaling. Together, these findings demonstrate a novel mechanism of high-dose ibuprofen efficacy and point to a potential new therapeutic target for anti-inflammatory drugs in CF. Overall design: Compare broader impact of ACC inhibition on TOFA-treated (5-(Tetradecyloxy-2-furoic acid) CF HNE cells

Publication Title

Acetyl-CoA carboxylase inhibition regulates microtubule dynamics and intracellular transport in cystic fibrosis epithelial cells.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact