refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 13 results
Sort by

Filters

Technology

Platform

accession-icon GSE46474
Expression data from rejection and non-rejection kidney transplant patients
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Acute renal allograft rejection is an important complication in kidney transplantation. Accurate diagnosis of rejection events is necessary for timely response and treatment. We illustrate the usefulness and biological relevance of selected multivariate approaches to detect rejection from genomic and proteomic signals. The data was used to study gene expression changes using whole genome microarray analysis of peripheral blood from subjects with acute rejection (n=20) and non-rejecting controls (n=20) to obtain insight into the molecular and biological causation of acute renal allograft rejection when combined with proteomics (iTRAQ) data for the same patients/time-points.

Publication Title

Novel multivariate methods for integration of genomics and proteomics data: applications in a kidney transplant rejection study.

Sample Metadata Fields

Sex, Specimen part, Race

View Samples
accession-icon GSE37171
Expression data from uremic patients and 20 healthy controls (normals)
  • organism-icon Homo sapiens
  • sample-icon 115 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Renal failure is characterized by important biological changes resulting in profound pleomorphic physiological effects termed uremia, whose molecular causation is not well understood. The data was used to study gene expression changes in uremia using whole genome microarray analysis of peripheral blood from subjects with end-stage renal failure (n=63) and healthy controls (n=20) to obtain insight into the molecular and biological causation of this syndrome.

Publication Title

Alteration of human blood cell transcriptome in uremia.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Race

View Samples
accession-icon GSE87301
White Blood Cell Differentials Enrich Whole Blood Expression Data in the Context of Acute Cardiac Allograft Rejection
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Acute cardiac allograft rejection is a serious complication of heart transplantation. Investigating molecular processes in whole blood via microarrays is a promising avenue of research in transplantation, particularly due to the non-invasive nature of blood sampling. However, whole blood is a complex tissue and the consequent heterogeneity in composition amongst samples is ignored in traditional microarray analysis. This complicates the biological interpretation of microarray data. Here we have applied a statistical deconvolution approach, cell-specific significance analysis of microarrays (csSAM), to whole blood samples from subjects either undergoing acute heart allograft rejection (AR) or not (NR). We identified eight differentially expressed probe-sets significantly correlated to monocytes (mapping to 6 genes, all down-regulated in ARs versus NRs) at a false discovery rate (FDR) <= 15%. None of the genes identified are present in a biomarker panel of acute heart rejection previously published by our group and discovered in the same data.

Publication Title

White blood cell differentials enrich whole blood expression data in the context of acute cardiac allograft rejection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33970
Predicting Acute Cardiac Allograft Rejection Using Donor and Recipient Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Acute rejection in cardiac transplant patients is still a contributing factor to limited survival of the implanted heart. Currently there are no biomarkers in clinical use that can predict, at the time of transplantation, the likelihood of post-transplantation acute rejection, which would be of great importance for personalizing immunosuppressive treatment. Within the Biomarkers in Transplantation initiative, the predictive biomarker discovery focused on data and samples collected before or during transplantation such as: clinical variables, genes and proteins from the recipient, and genes from the donor. Based on this study, the best predictive biomarker panel contains genes from the recipient whole blood and from donor endomyocardial tissue and has an estimated area under the curve of 0.90. This biomarker panel provides clinically relevant prediction power and may help personalize immunosuppressive treatment and frequency of rejection monitoring.

Publication Title

Predicting acute cardiac rejection from donor heart and pre-transplant recipient blood gene expression.

Sample Metadata Fields

Sex, Age, Specimen part, Race

View Samples
accession-icon SRP097677
RNA-seq analysis of differential gene expression in jejunal epithelial from Holstein Friesian bulls undergoing diet restriction and compensatory growth
  • organism-icon Bos taurus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The objective of this study was to examine the effect of dietary restriction and subsequent re-alimentation induced compensatory growth on the global gene expression profile of jejunum epithelial Holstein Friesian bulls (n=40) were assigned to one of two groups: restricted feed allowance (RES; n=20) for 125 days (Period 1) followed by ad libitum access to feed for 55 days (Period 2) or (ii) ad libitum access to feed throughout (ADLIB; n=20). All bulls received the same diet of 70% concentrate 30% grass silage through out the experimental trial,with the amount of feed provided different dependent on each treatment group. At the end ofeach period, 10 animals from each treatment group (RES, ADLIB) were slaughtered, and jejunum epithelial collected from all animals. RNA was extracted and jejununal epithelium gene expression was examined using RNAseq technology on all samles collected (end of Period 1: 10 samples each from ADLIB and RES groups; end of Period 2: 10 samples each from ADLIB and RES groups). Dietary restriction and subsequent re-alimentation were associated with altered expression of genes involved in digestion and metabolism, aswell as cellular protection and detoxification in jejunal epithelia. This information may be exploited in genomic breeding programmes to assist selection of cattle with a greater ability to compensate following a period dietary restriction. Overall design: 40 jejunumal epithelium RNA samples were analysed in total. 10 samples were from jejunum epithelium collected at the end of a period of dietary restriction (d 125; Period 1) and 10 samples were from jejunum epithelium collected after 55 days of compensatory growth (d 55 of re-alimentation, Period 2). In addition, RNA was also anlaysed from 10 samples collected from animals fed ad libitum at the end of both Period 1 and Period 2.

Publication Title

Gene co-expression networks contributing to the expression of compensatory growth in metabolically active tissues in cattle.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP092050
RNA-seq analysis of differential gene expression in rumen papillae from Holstein Friesian bulls undergoing diet restriction and compensatory growth
  • organism-icon Bos taurus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The objective of this study was to examine the effect of dietary restriction and subsequent re-alimentation induced compensatory growth on the global gene expression profile of ruminal epithelial papillae. Holstein Friesian bulls (n=38) were assigned to one of two groups: restricted feed allowance (RES; n=19) for 125 days (Period 1) followed by ad libitum access to feed for 55 days (Period 2) or (ii) ad libitum access to feed throughout (ADLIB; n=19). All bulls received the same diet of 70% concentrate 30% grass silage through out the experimental trial,with the amount of feed provided different dependent on each treatment group. At the end of Period 1, 9 animals from each treatment group were slaughtered, with 10 animals from each treatment slaughtered at the end of Period 2. Rumen epithelium was collected from all animals within thirty minutes of slaughter. RNA was extracted and rumen epithelium gene expression was examined using RNAseq technology on all samles collected (end of Period 1: 9 samples each from ADLIB and RES groups; end of Period 2: 10 samples each from ADLIB and RES groups). Genes identified as differentially expressed in response to both dietary restriction and subsequent compensatory growth included those involved in processes such as cellular interactions and transport, protein folding and gene expression, as well as immune response. This information can be exploited in genomic breeding programmes to assist selection of cattle with a greater ability to compensate following a period dietary restriction. Overall design: 38 rumen epithelium RNA samples were analyzed in total. Purebred Holstein Friesian bulls were assigned to one of two feeding treatments (i) restricted feed allowance for 125 days (n=9) followed by ad libitum access to feed for a further 55 days (n=10) or (ii) a control group with ad libitum access to feed through out the 180 days trial (n=19). The first 125 days of the trial were denoted as Period 1, during which treatment groups were fed differentially. The subsequent 55 days, denoted as Period 2 during which all bulls were fed ad libitum. All bulls received the same diet of 70% concentrate 30% grass silage through out the experimental trial, with the amount of feed provided different dependent on each treatment group. Restricted fed animals were fed to grow at 0.6 kg /day during Period 1, with ad libitum animals expected to gain in excess of 1.5 to 2 kg/day.

Publication Title

Gene co-expression networks contributing to the expression of compensatory growth in metabolically active tissues in cattle.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE60438
Transcriptome profiling of deciduas from pre-eclamptic and normotensive pregnancies
  • organism-icon Homo sapiens
  • sample-icon 125 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Genome-wide analysis of decidual transcriptome in pre-eclampsia compared with normotensive controls to find differentially expressed genes/pathways.

Publication Title

Genome-wide transcriptome directed pathway analysis of maternal pre-eclampsia susceptibility genes.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE77461
R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders.
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Pioneering studies within the last few years have allowed the in vitro expansion of tissue-specific adult stem cells from a variety of endoderm-derived organs, including the stomach, small intestine and colon. Here we derived organoids from mouse gallbladder tissue (gallbladder organoids), from mouse liver (including the extrahepatic biliary ducts and gallbladder; liver organoids) and from mouse small intestine tissue (intestinal organoids). RNA was prepared from these organoids and used to assay expression of 21,258 genes using Affymetrix gene expression arrays. RNA was also prepared from mouse gallbladder, liver and small intestine tissues and used to assay gene expression in these tissues. Finally, gallbladder organoids were induced to differentiate by removing R-spondin 1 and noggin from the culture media and subjected to gene expression array analysis.

Publication Title

R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47969
Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRIDE AT/RT
  • organism-icon Homo sapiens
  • sample-icon 118 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The aim of this work was to compare the effects of AT, RT, and the full combination (AT/RT) on central ectopic fat, liver enzymes, and fasting insulin resistance [homeostatic model assessment (HOMA)]

Publication Title

A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status.

Sample Metadata Fields

Age, Specimen part, Subject, Time

View Samples
accession-icon GSE48264
Uppsala Longitudinal Study of Adult Men (ULSAM)
  • organism-icon Homo sapiens
  • sample-icon 107 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

The Uppsala Longitudinal Study of Adult Men is a population-based study aimed at identifying risk factors for cardiovascular disease. At the time of biopsy all subjects were ~ 70yr of age

Publication Title

A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status.

Sample Metadata Fields

Specimen part, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact