refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 97 results
Sort by

Filters

Technology

Platform

accession-icon GSE66577
Molecular characterization of diabetic heart of akita
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer, Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cardiac transcriptome profiling of diabetic Akita mice using microarray and next generation sequencing.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP015918
Influence of p38 MAPK (PMK-1) on the heat stress response of C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

PMK-1 is involved in the heat stress response of C. elegans, translocates to the nucleus upon heat exposure and influences the expression of chaperone genes, proteasomal subunits and protein-biosynthesis related genes. Overall design: Differential Gene expression of WT and pmk-1 deletion mutant (KU25) after 5 hours at 35°C

Publication Title

The p38 MAPK PMK-1 shows heat-induced nuclear translocation, supports chaperone expression, and affects the heat tolerance of Caenorhabditis elegans.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE32098
Blood vessels restrain pancreas branching, differentiation and growth
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

How organ size and form are controlled during development is a major question of biology. Blood vessels have been shown to be essential for early development of the liver and pancreas, and are fundamental to normal and pathological tissue growth. Here we report that non-nutritional signals from blood vessels surprisingly act to restrain pancreas growth. Elimination of endothelial cells increases the size of embryonic pancreatic buds. Conversely, VEGF-induced hypervascularization decreases pancreas size. The growth phenotype results from vascular restriction of pancreatic tip cell formation, lateral branching and differentiation of the pancreatic epithelium into endocrine and acinar cells. The effects are seen both in vivo and ex vivo, indicating a perfusion-independent mechanism. Thus the vasculature controls pancreas morphogenesis and growth by reducing branching and differentiation of primitive epithelial cells.

Publication Title

Blood vessels restrain pancreas branching, differentiation and growth.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19719
Alu sequences in undifferentiated human embryonic stem cells display high levels of A-to-I RNA editing
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Adenosine to Inosine (A-to-I) RNA editing is a site-specific modification of RNA transcripts, catalyzed by members of the ADAR (Adenosine Deaminase Acting on RNA) protein family. RNA editing occurs in human RNA in thousands of different sites. Some of the sites are located in protein-coding regions but the majority is found in non-coding regions, such as 3UTRs, 5UTRs and introns - mainly in Alu elements. While editing is found in all tissues, the highest levels of editing are found in the brain. It was shown that editing levels within protein-coding regions are increased during embryogenesis and after birth and that RNA editing is crucial for organism viability as well as for normal development. In this study we characterized the A-to-I RNA editing phenomenon during neuronal and spontaneous differentiation of human embryonic stem cells (hESCs). We identified high editing levels of Alu repetitive elements in hESCs and demonstrated a global decrease in editing levels of non-coding Alu sites when hESCs are differentiating, particularly into the neural lineage. Using RNA interference, we showed that the elevated editing levels of Alu elements in undifferentiated hESCs are highly dependent on ADAR1. DNA microarray analysis showed that ADAR1 knockdown has a global effect on gene expression in hESCs and leads to a significant increase in RNA expression levels of genes involved in differentiation and development processes, including neurogenesis. Taken together, our data suggest that A-to-I editing of Alu sequences plays a role in the regulation of hESC early differentiation decisions.

Publication Title

Alu sequences in undifferentiated human embryonic stem cells display high levels of A-to-I RNA editing.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24031
Adipose tissue dysfunction signals progression of hepatic steatosis towards nonalcoholic steatohepatitis in C57Bl/6 mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Objective: Nonalcoholic fatty liver disease (NAFLD) is linked to obesity and diabetes, suggesting an important role of adipose tissue in the pathogenesis of NAFLD. Here we aim to investigate the interaction between adipose tissue and liver in NAFLD, and identify potential early plasma markers that predict NASH. Research Design and Methods: C57Bl/6 mice were chronically fed a high fat diet to induce NAFLD and compared with mice fed low fat diet. Extensive histological and phenotypical analyses coupled with a time-course study of plasma proteins using multiplex assay was performed. Results: Mice exhibited pronounced heterogeneity in liver histological scoring, leading to classification into 4 subgroups: LF-low (LFL) responders displaying normal liver morphology, LF-high (LFH) responders showing benign hepatic steatosis, HF-low (HFL) responders displaying pre-NASH with macrovesicular lipid droplets, and HF-high (HFH) responders exhibiting overt NASH characterized by ballooning of hepatocytes, presence of Mallory bodies, and activated inflammatory cells. Compared to HFL responders, HFH mice gained weight more rapidly and exhibited adipose tissue dysfunction characterized by decreased final fat mass, enhanced macrophage infiltration and inflammation, and adipose tissue remodelling. Plasma haptoglobin, IL-1, TIMP-1, adiponectin and leptin were significantly changed in HFH mice. Multivariate analysis indicated that in addition to leptin, plasma CRP, haptoglobin, eotaxin and MIP-1 early in the intervention were positively associated with liver triglycerides. Intermediate prognostic markers of liver triglycerides included IL-18, IL-1, MIP-1 and MIP-2, whereas insulin, TIMP-1, GCP-2 and MPO emerged as late markers. Conclusions: Our data support the existence of a tight relationship between adipose tissue dysfunction and NASH pathogenesis and point to several novel potential predictive biomarkers for NASH.

Publication Title

Adipose tissue dysfunction signals progression of hepatic steatosis towards nonalcoholic steatohepatitis in C57BL/6 mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24988
Gene expression profiles based on Pulmonary Artery Pressures in Pulmonary Fibrosis
  • organism-icon Homo sapiens
  • sample-icon 116 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Pulmonary Hypertension (PH) is a frequent complication of Pulmonary Fibrosis (PF). PH can be seen in PF in the abscence of hypoxemia, irrespective of the degree of fibrosis. At the same time, a consistent number of patients with advanced PF never develop PH. The pathogenesis of PH secondary to PF remains unclear. PF patients are often referred to lung transplantation, but they present a higher incidence of pimary graft dysfunction than other diseases. The cause of this is unknown, and the relationship with PH remains unclear.

Publication Title

Gene expression profiling in the lungs of patients with pulmonary hypertension associated with pulmonary fibrosis.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP065496
Transcriptome of cancer associated fibroblasts before and after triptolide treatment in pancreatic cancer
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Pancreatic cancer is characterized by heavy desmoplasia. Triptolide and its water-soluble pro-drug Minnelide are extremely efficient against pancreatic cancer in animal models. However, the effects of triptolide on pancreatic cancer stromal cells are largely unknown. The aim of this project is to indentify potential cellular functions that are affected by triptolide in pancreatic cancer associated fibroblasts. Overall design: Cancer associated fibroblasts were isolated from pancreatic tumor of KPC mouse model. Cells were either untreated or treated with 100nM triptolide for 6h or 24h before RNA isolation. The RNA was quality tested using a Bioanalyzer 2100 (Agilent Technologies, CA, USA). cDNA was created by reverse transcription of oligo-dT purified polyadenylated RNA and fragmented, blunt-ended, and then ligated to barcoded adaptors. Then, the library was size selected, and the selection process was validated and quantified by capillary electrophoresis and qPCR, respectively. Samples were load on the HiSeq 2500 (Illumina Inc., CA, USA) to generate around 25 million paired-end 50bp reads for each sample.

Publication Title

Inactivation of Cancer-Associated-Fibroblasts Disrupts Oncogenic Signaling in Pancreatic Cancer Cells and Promotes Its Regression.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE39975
Structural, functional and molecular analysis of the effects of aging in the small intestine and colon of C57BL/6J mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Structural, functional and molecular analysis of the effects of aging in the small intestine and colon of C57BL/6J mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE39974
Structural, functional and molecular analysis of the effects of aging in the small intestine and colon of C57BL/6J mice [Small Intestine data]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

By regulating digestion and absorption of nutrients and providing a barrier against the external environment the intestine provides a crucial contribution to the maintenance of health. To what extent aging-related changes in the intestinal system contribute to the impaired health of the aging body is still under debate. Young (4 months) and old (21 months) male C57BL/6J mice were fed a control low-fat (10E%) or a high-fat diet (45E%) for 2 weeks. During the intervention gross energy intake and energy excretion in the feces were measured. After sacrifice the small and large intestine were isolated whereby the small intestine was divided in three equal parts. Of each of the isolated segments Swiss rolls were prepared for histological analysis and the luminal content was isolated to examine alterations in the microflora with 16S rRNA Q-PCR. Furthermore, mucosal scrapings were isolated from each segment to determine differential gene expression by microarray analysis and global DNA methylation by pyrosequencing. Digestible energy intake was similar between the two age groups on both the control and the high-fat diet implying that macronutrient metabolism is not affected in 21-month-old mice. This observation was supported by the fact that the microarray analysis on RNA from intestinal scrapings showed no marked changes in expression of genes involved in metabolic processes. Decreased expression of Cubilin was observed in the intestine of 21-month-old mice, which might contribute to aging-induced vitamin B12 deficiency. Furthermore, microarray data analysis revealed enhanced expression of a high number of genes involved in immune response and inflammation in the colon, but not in the small intestine of the 21-month-old mice. Aging-induced global hypomethylation was observed in the colon and the distal part of the small intestine, but not in the first two sections of the small intestine. In 21-month old mice the most pronounced effects of aging was observed in the colon, limited changes were observed in the small intestine.

Publication Title

Structural, functional and molecular analysis of the effects of aging in the small intestine and colon of C57BL/6J mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE33044
Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Kupffer cells have been implicated in the pathogenesis of various liver diseases. However, their involvement in metabolic disorders of the liver, including fatty liver disease, remains unclear. The present study sought to determine the impact of Kupffer cells on hepatic triglyceride storage and to explore the possible mechanisms involved. To that end, C57Bl/6 mice rendered obese and steatotic by chronic high-fat feeding were treated for 1 week with clodronate liposomes, which cause depletion of Kupffer cells. Loss of expression of marker genes Cd68, F4/80, and Clec4f, and loss of Cd68 immunostaining verified almost complete removal of Kupffer cells from the liver. Also, expression of complement components C1, the chemokine (C-C motif) ligand 6 (Ccl6), and cytokines interleukin-15 (IL-15) and IL-1beta were markedly reduced. Importantly, Kupffer cell depletion significantly decreased liver triglyceride and glucosylceramide levels concurrent with increased expression of genes involved in fatty acid oxidation including peroxisome proliferator-activated receptor alpha (PPARalpha), carnitine palmitoyltransferase 1A (Cpt1alpha), and fatty acid transport protein 2 (Fatp2). Treatment of mice with IL-1beta decreased expression of PPARalpha and its target genes, which was confirmed in primary hepatocytes. Consistent with these data, IL-1beta suppressed human and mouse PPARalpha promoter activity. Suppression of PPARalpha promoter activity was recapitulated by overexpression of nuclear factor kappaB (NF-kappaB) subunit p50 and p65, and was abolished upon deletion of putative NF-kappaB binding sites. Finally, IL-1beta and NF-kappaB interfered with the ability of PPARalpha to activate gene transcription. CONCLUSION: Our data point toward important cross-talk between Kupffer cells and hepatocytes in the regulation of hepatic triglyceride storage. The effect of Kupffer cells on liver triglycerides are at least partially mediated by IL-1beta, which suppresses PPARalpha expression and activity.

Publication Title

Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact