refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 380 results
Sort by

Filters

Technology

Platform

accession-icon SRP026333
Long Noncoding RNA HNF1A-AS1 Regulates Proliferation and Migration in Esophageal Adenocarcinoma Cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Objectives: Long non-coding RNAs (lncRNAs) have been shown to play important roles in the development and progression of cancer. However, functional lncRNAs and their downstream mechanisms are largely unknown in the molecular pathogenesis of esophageal adenocarcinoma (EAC) and its progression. Design: lncRNAs that are abnormally upregulated in EACs were identified by RNA-seq analysis, followed by quantitative RT-PCR (qRTPCR) validation using tissues from 31 EAC patients. Cell biological assays in combination with siRNA-mediated knockdown were performed in order to probe the functional relevance of these lncRNAs. Results: We discovered that a lncRNA, HNF1A-AS1, is markedly upregulated in human primary EACs relative to their corresponding normal esophageal tissues (mean fold change 7.2, p<0.01). We further discovered that HNF1A-AS1 knockdown significantly inhibited cell proliferation and anchorage independent growth, suppressed S-phase entry, and inhibited cell migration and invasion in multiple in vitro EAC models (p<0.05). A gene ontological analysis revealed that HNF1A-AS1 knockdown preferentially affected genes that are linked to assembly of chromatin and the nucleosome, a mechanism essential to cell cycle progression. The well-known cancer-related lncRNA, H19, was the gene most markedly inhibited by HNF1A-AS1 knockdown. Consistent to this finding, there was a significant positive correlation between HNF1A-AS1 and H19 expression in primary EACs (p<0.01). Overall design: In order to identify novel oncogenic lncRNAs in esophageal adenocarcinogenesis, we carried out RNA-seq of a matched NE-BE-EAC tissue pair

Publication Title

Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE71717
Expression data from Human Ishikawa cells treated with Genistein
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study provides a comprehensive evaluation of changes in gene expression during treatment with Genistein in vitro.

Publication Title

Dose- and Time-Dependent Transcriptional Response of Ishikawa Cells Exposed to Genistein.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP067926
FOXE3 Contributes to Peters Anomaly through Transcriptional Regulation of an Autophagy Associated Protein termed DNAJB1
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

FOXE3 is a lens specific transcription factor that has been associated with anterior segment ocular dysgenesis. To determine the transcriptional target(s) of FOXE3 that are indispensable for the anterior segment development, we examined the transcriptome and the proteome of cells expressing truncated FOXE3 responsible for Peters anomaly identified through linkage-coupled next-generation whole exome sequencing. We found that DNAJB1, an autophagy-associated protein, was the only candidate exhibiting differential expression in both screens. We confirmed the candidacy of DNAJB1 through chromatin immunoprecipitation and luciferase assays while knockdown of DNAJB1 in human lens epithelial cells resulted in mitotic arrest. Subsequently, we targeted dnajb1a in zebrafish through injection of a splice-blocking morpholino. The dnajb1a morphants exhibited underdeveloped cataractous lenses with persistent apoptotic nuclei. In conclusion, we have identified DNAJB1 as a transcriptional target of FOXE3 in a novel pathway that is crucial for development of the anterior segment of the eye. Overall design: Human Embryonic Kidney (HEK293FT) cells were transfected with the expression vector (pT-RexTM-DEST30) harboring either the wild type or the mutant (C240*) FOXE3 ORF (open reading frame). The experimental design included a total of eight biological replicates of cells expressing the wild type and eight replicates of mutant FOXE3 along with eight non-transfected controls. Cells were harvested 24-hour post-transfection and subjected to total RNA isolation for the preparation of whole transcriptome next-generation sequencing libraries. Initially, we examined the quality of transcriptome libraries on a MiSeq genome analyzer. Subsequent to confirmation of the quality, all libraries were paired-end sequenced (2 x 100 bp) using Illumina TruSeq Cluster V3 flow cell at a concentration of 13.0 pM in two separate lanes (12 bar-coded mRNA pooled libraries in each lane) on a HiSeq 2000 genome analyzer.

Publication Title

FOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11869
The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol.
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have determined the gene expression profile induced by 17 alpha-ethynyl estradiol (EE) in Ishikawa cells, a human uterine-derived estrogen-sensitive cell line, at various doses (1 pM, 100 pM, 10 nM, and 1 microM) and time points (8, 24, and 48 h). The transcript profiles were compared between treatment groups and controls (vehicle-treated) using high-density oligonucleotide arrays to determine the expression level of approximately 38,500 human genes. By trend analysis, we determined that the expression of 2560 genes was modified by exposure to EE in a dose- and time-dependent manner (p </= 0.0001). The annotation available for the genes affected indicates that EE exposure results in changes in multiple molecular pathways affecting various biological processes, particularly associated with development, morphogenesis, organogenesis, cell proliferation, cell organization, and biogenesis. All of these processes are also affected by estrogen exposure in the uterus of the rat. Comparison of the response to EE in both the rat uterus and the Ishikawa cells showed that 71 genes are regulated in a similar manner in vivo as well as in vitro. Further, some of the genes that show a robust response to estrogen exposure in Ishikawa cells are well known to be estrogen responsive, in various in vivo studies, such as PGR, MMP7, IGFBP3, IGFBP5, SOX4, MYC, EGR1, FOS, CKB, and CCND2, among others. These results indicate that transcript profiling can serve as a viable tool to select reliable in vitro systems to evaluate potential estrogenic activities of target chemicals and to identify genes that are relevant for the estrogen response.

Publication Title

The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17624
Expression data from human Ishikawa cells treated with Bisphenol A
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study provides a comprehensive evaluation of changes in gene expression during treatment with Bisphenol A in vitro.

Publication Title

The genomic response of Ishikawa cells to bisphenol A exposure is dose- and time-dependent.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE22317
Distinct signature of altered homeostasis in aging rod photoreceptors: Implications for retinal diseases
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To better understand the mechanistic basis of aging and its relationship with retinal degeneration, we examined gene expression changes in aging rod photoreceptors. Rod photoreceptor cell death is a feature of normal retinal aging and is accelerated in many retinal degenerative diseases, including AMD, the leading cause of untreatable adult blindness in the United States and other western countries. To our knowledge, the examination of age-related gene expression changes in a specific neuronal cell-type is novel, and it has allowed us to identify significant age-related changes with better resolution than is possible with whole retina samples. We used flow cytometry and a transgenic mouse with GFP-tagged rod photoreceptors to purify this specific cell population, and gene expression changes were evaluated at three time points using microarrays and quantitative RT-PCR. Our results suggest that aging is progressive, beginning even in young adult mice. Although rod photoreceptors are highly specialized neurons, our analyses revealed changes in consensus pathways of aging, including oxidative phosphorylation and stress responses affecting transcription and inflammation. In addition, we identified stress response processes that may be especially relevant for the aging retina and retinal diseases, such as angiogenesis and nuclear receptor signaling pathways that affect retinoid and lipid metabolism.

Publication Title

Distinct signature of altered homeostasis in aging rod photoreceptors: implications for retinal diseases.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE25127
Ewing Sarcoma cell lines treated with mithramycin
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The study aims to define gene expression changes associated with mithramycin treatment of Ewing Sarcoma cell lines.

Publication Title

Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE142317
Expression profile of MDA-MB435 cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To further analyze the effect of WWOX on metastasis formation, we studied the differential expression of mRNAs using Affymetrix genechip in WWOX- sufficient and deficient metastatic cells.

Publication Title

Pleiotropic tumor suppressor functions of WWOX antagonize metastasis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE33897
Dysregulation of c-terminal ezrin phosphorylation prevents tumor progression and metastasis and alters cellular metabolism in osteosarcoma
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This dataset contains Affymetrix Mouse Genome 430 2.0 Array data obtained from K7M2 cells over-expressing ezrinT567A and the wild-type

Publication Title

Dysregulation of ezrin phosphorylation prevents metastasis and alters cellular metabolism in osteosarcoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE101749
Gene expression response to eupolauridine-9591 (E9591) and liriodenine methiodide (LMT) in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Eupolauridine and liriodenine are plant-derived aporphinoid alkaloids that exhibit potent inhibitory activity against the opportunistic fungal pathogens Candida albicans and Cryptococcus neoformans. However, the molecular mechanism of this antifungal activity is unknown. In this study, we show that eupolauridine 9591 (E9591), a synthetic analog of eupolauridine, and liriodenine methiodide (LMT), a methiodide salt of liriodenine, mediate their antifungal activities by disrupting mitochondrial iron-sulfur (Fe-S) cluster synthesis. Several lines of evidence supported this conclusion. First, both E9591 and LMT elicited a transcriptional response indicative of iron imbalance, causing the induction of genes that are required for iron uptake and for the maintenance of cellular iron homeostasis. Second, a genome-wide fitness profile analysis showed that yeast mutants with deletions in iron homeostasisrelated genes were hypersensitive to E9591 and LMT. Third, treatment of wild-type yeast cells with E9591 or LMT generated cellular defects that mimicked deficiencies in mitochondrial Fe-S cluster synthesis, including an increase in mitochondrial iron levels, a decrease in the activities of Fe-S cluster enzymes, a decrease in respiratory function, and an increase in oxidative stress. Collectively, our results demonstrate that E9591 and LMT perturb mitochondrial Fe-S cluster biosynthesis; thus, these two compounds target a cellular pathway that is distinct from the pathways commonly targeted by clinically used antifungal drugs. Therefore, the identification of this pathway as a target for antifungal compounds has potential applications in the development of new antifungal therapies.

Publication Title

Two plant-derived aporphinoid alkaloids exert their antifungal activity by disrupting mitochondrial iron-sulfur cluster biosynthesis.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact