refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE13736
Gene expression of innate immune response in endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression in human umbilical vein endothelial cells (HUVEC) was investigated by microarray analysis after 4 h infection with S. aureus isolated from healthy nasal carriers (n=5) and from blood (n=5) of septic patients. All bacterial isolates were spa-typed and characterized with a DNA microarray to determine the presence of virulence genes.

Publication Title

Staphylococcus aureus isolates from blood and anterior nares induce similar innate immune responses in endothelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE92530
Genome-wide gene expression analysis of BQ.Ncf1m1J mutated and BQ wild type mice during collagen induced arthritis
  • organism-icon Mus musculus
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Whole blood and spleen tissue was collected 15 (d15) or 44 (d44) days postimmunization from mice immunized with type II collagen on day 0 and immunostimulated on day 21.

Publication Title

Reactive Oxygen Species Regulate Both Priming and Established Arthritis, but with Different Mechanisms.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE40170
Flow dependent gene expression in the rat aorta under physiological conditions
  • organism-icon Rattus norvegicus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.1 ST Array (ragene11st)

Description

Objective: Shear forces play a key role in the maintenance of vessel wall integrity. Current understanding regarding shear-dependent gene expression is mainly based on in vitro or in vivo observations with experimentally deranged shear, hence reflecting acute molecular events in relation to flow. Our objective was to combine computational fluid dynamic (CFD) simulations with global microarray analysis to study flow-dependent vessel wall biology in portions of the entire aorta under physiological conditions. Methods and Results: Animal-specific WSS magnitude and vector direction were estimated using CFD based on aortic geometry and flow information acquired by MRI. Two distinct flow pattern regions were identified in the normal rat aorta; the distal part of the inner curvature being exposed to low WSS and a non-uniform vector direction, and a region along the outer curvature being subjected to markedly higher levels of WSS and a uniform vector direction. Microarray analysis identified numerous novel mechanosensitive genes, including Hand2, trpc4 and slain2, and confirmed well-known ones, such as klf2 and BMP4. Three genes were further validated for protein , including Hand2, which showed higher expression in the endothelium in regions exposed to disturbed flow. Gene ontology analysis revealed an over-representation of genes involved in transcriptional regulation.

Publication Title

Characterization of shear-sensitive genes in the normal rat aorta identifies Hand2 as a major flow-responsive transcription factor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP186182
Transcriptome analysis of activated fibroblasts after intratracheal transfer in bleomycin-induced lung fibrosis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Intratracheal transfer of isolated lung fibroblasts in bleomycin-induced lung fibrosis recapitulates the activation process of lung fibroblasts after epithelial injury. In order to investigate gene expression signatures of transferred fibroblasts, we purified transferred fibroblasts 2, 4, and 7 days after the transfer and performed transcriptome analysis. We also isolated Acta2 high and low cells by using Acta2-mKO1 reporter mice 4 days after the transfer. Overall design: Lung fibroblasts were isolated from untreated Col-GFP mice after tissue dissociation and negative selection for lineage markers. Isolated lung fibroblasts were intratracheally transferred into wild type mice, which received intratracheal bleomycin treatment 7 days before the transfer. Col-GFP+ cells were purified from the host lungs by FACS sorting on 2, 4, and 7 days after the transfer. Acta2 high and low cells were prepared by transferring lung fibroblasts from Acta2-mKO1 reporter mice. mRNA was isolated from sorted cells, and gene expression profiles were acquired by next generation sequencing.

Publication Title

Gli signaling pathway modulates fibroblast activation and facilitates scar formation in pulmonary fibrosis.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE38816
Intratumoral diversity in Follicular lymphoma
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Follicular lymphoma (FL) shows heterogenous expression of the cell surface B-cell marker, CD20. In order to investigate whether this heterogeneity also marks underlying transcriptional heterogeneity, we sorted tumor B-cells from 8 FL specimens based upon their intermediate or high expression of CD20 and transcriptionally profiled them.

Publication Title

Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma.

Sample Metadata Fields

Sex, Age, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact