refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 86 results
Sort by

Filters

Technology

Platform

accession-icon GSE40444
Stabilization of OCT4 synthetic mRNA in adult human skin cells using small molecules
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The OCT4 transcription factor is involved in many cellular processes, including development, reprogramming, maintaining pluripotency and differentiation. Synthetic OCT4 mRNA was recently used (in conjunction with other reprogramming factors) to generate human induced pluripotent stem cells. Here, we discovered that BAY 11-7082 (BAY11) could significantly increase the expression of OCT4 following transfection of synthetic mRNA (synRNA) into adult human skin cells. Importantly, the increased levels of OCT4 resulted in significantly increased expression of genes downstream of OCT4, including the previously identified SPP1, DUSP4 and GADD45G. We also identified a novel OCT4 downstream target gene SLC16A9 which demonstrated significantly increased expression following elevation of OCT4 levels. This small molecule-based stabilization of synthetic mRNA expression may have multiple applications for future cell-based research and therapeutics.

Publication Title

BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP066365
Nudt3 is a mRNA Decapping Enzyme That Modulates Cell Migration
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The Dcp2 and Nudt16 Nudix hydrolases, are mRNA decapping enzymes that preferentially modulate stability of a subset of mRNAs. Here we report Nudt3 is a third Nudix protein that possess mRNA decapping activity in cells and is a modulator of cell migration in MCF-7 breast cancer cells. Genome-wide analysis of Nudt3 compromised cells identified increases in mRNAs involved in cell motility including integrin ß6, lipocalin-2 and fibronectin. The increase in mRNA levels was dependent on Nudt3 decapping activity where integrin ß6 and lipocalin-2 were modulated directly through mRNA stability, while fibronectin was indirectly controlled. Moreover, increased cell migration observed in Nudt3 depleted cells was mediated through the extracellular integrin ß6 and fibronectin protein nexus. We conclude, Nudt3 is an mRNA decapping enzyme that orchestrates expression of a subset of mRNAs to modulate cell migration and further substantiates the existence of multiple decapping enzymes functioning in distinct cellular pathways in mammals. Overall design: Stably transformed MCF-7 cell lines constitutively expressing either a short hairpin RNA (shRNA) directed against Nudt3 (Nudt3KD) or a non-targeted control shRNA (ConKD) were used, with three replicate cultures used per group (n=3).

Publication Title

Nudt3 is an mRNA decapping enzyme that modulates cell migration.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP029912
Temporally defined neocortical translation and polysome assembly is determined by the RNA-binding protein, Hu antigen R
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Precise spatiotemporal control of mRNA translation machinery is essential to proper development of highly complex systems like the neocortex. Here, we show that an RNA-binding protein, Hu antigen R (HuR), regulates both neocorticogenesis and specificity of neocortical translation machinery in a developmental stage-dependent manner in mice. Neocortical absence of HuR alters the phosphorylation states of the initiation and elongation factors of the core translation machinery. In addition, HuR regulates the temporally specific positioning of functionally related mRNAs into the active translation sites, the polysomes. HuR also determines the specificity of neocortical polysomes by defining their combinatorial composition of ribosomal proteins and initiation and elongation factors. For some of the HuR-dependent proteins, the association with polysomes depends on the eIF2 alpha kinase 4 (eIF2ak4), which associated with HuR in prenatal developing neocortices. Finally, we found that deletion of HuR prior to embryonic day 10 (E10) disrupts both neocortical lamination and formation of the main neocortical commissure, the corpus callosum. Our study identifies a crucial role for HuR in neocortical development as a translational gatekeeper for functionally related mRNA subgroups and polysomal protein specificity. Overall design: Cortex was dissected from WT and HuR cKO mouse pups at embryonic day 13 (E13) or the day of birth (P0).

Publication Title

Thalamic WNT3 Secretion Spatiotemporally Regulates the Neocortical Ribosome Signature and mRNA Translation to Specify Neocortical Cell Subtypes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP107230
Identification of PAX7-induced transcriptional changes and PAX7 genomic binding during skeletal myogenic differentiation of H9 embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

Skeletal myogenic commitment of human pluripotent cells can be achieved by doxycycline-inducible expression of the transcription factor PAX7. To gain further insights on PAX7 function during this process, we performed a time course whole transcriptome analysis of differentiating H9 human embryonic stem cells from doxycycline-treated and untreated cultures. In addition, we identified the genomic binding of PAX7 in one of the selected time point (referred as PAX7+ proliferating myogenic progenitors). Overall design: Gene expression profiling was performed on biological replicates from differentiating H9 cells at the following time points: PAX7+ mesodermal cells (day 14), PAX7+ proliferating myogenic progenitors (approximately day 23), and differentiated myocytes (differentiation stage – around day 30; 7 days in the absence of PAX7 induction). Since PAX7 expression is doxycycline inducible, we also collected uninduced control samples at the same time points (termed mesodermal cells for day 14 and proliferating cells for day 23). PAX7 genomic binding was assessed in day 23 dox-treated cultures.

Publication Title

PAX7 Targets, CD54, Integrin α9β1, and SDC2, Allow Isolation of Human ESC/iPSC-Derived Myogenic Progenitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP067232
Transcriptome profiling of purified mouse platelets
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The aim of this study is to determine the relative expresson levels of mRNA transcripts in wild type platelets Methods: Total RNA was extracted and purified from purified platelets from BALB/c male mice (3 independent samples). Platelet purification was performed as described in Josefsson EC et al, Journal of Experimental Medicine (2011) 208:2017-31. Total RNA (100 ng) was used to generate sequencing libraries for whole transcriptome analysis following Illumina’s TruSeq RNA v2 sample preparation protocol. Completed libraries were sequenced on HiSeq 2000 with TruSeq SBS Kit v3- HS reagents (Illumina) as 100 bp paired-end reads at the Australian Genome Research Facility (AGRF), Melbourne. Reads were aligned to the mouse reference genome mm10 and counts for known genes were obtained using the Rsubread package (version 1.18.0) (Liao et al. 2013; Liao et al. 2014). Overall design: Total RNA was extracted and purified from purified platelets from BALB/c male mice (3 independent samples per population).

Publication Title

Loss of PUMA (BBC3) does not prevent thrombocytopenia caused by the loss of BCL-XL (BCL2L1).

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE25013
Genome-wide analysis of adipose tissue from cytoskeletal tropomyosin transgenic mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of the effect on global gene regulation in epididymal adipose tissue of overexpressing the cytoskeletal tropomyosin, Tm5NM1 to help understand the transcriptional events that lead to increased fat mass in transgenic mice.

Publication Title

Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56670
Expression data from SDH-disabled GIST
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pediatric GIST commonly harbors a disabled succinate dehydrogenase complex (SDH), which yields tumors with highly conserved genomes but characteristic epigenomic signatures. Mysteriously, nearly half of such SDH-deficient GIST, including tumors from Carney Triad patients, lack identifiable mutations in SDH component genes and genes required for complex assembly (SDHA, SDHB, SDHC, SDHD, SDHAF, termed SDHx). Genomic sequencing coupled with DNA methylation and transcriptional profiling have exposed SDHC promoter-specific CpG island epimutation and concomitant gene silencing in the majority of SDHx-WT GIST.

Publication Title

Recurrent epimutation of SDHC in gastrointestinal stromal tumors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19495
Global Gene Expression of Human Hepatoma Cells After Amino Acid Limitation
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

1507 known genes have been identified differentially regulated during HisOH treatment by more than 2 fold. This includes 250 down-regulated genes and 1257 up-regulated genes.

Publication Title

Expression profiling after activation of amino acid deprivation response in HepG2 human hepatoma cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE50091
Expression data from late-luteal bovine endometrium
  • organism-icon Bos taurus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

In both beef and dairy cattle, the majority of embryo loss occurs in the first 14-16 days following insemination. During this period, the embryo is completely dependent on its maternal uterine environment for development, growth and ultimately survival, therefore an optimum uterine environment is critical to embryo survival.

Publication Title

Endometrial gene expression in high- and low-fertility heifers in the late luteal phase of the estrous cycle and a comparison with midluteal gene expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70214
Short-term hypoxia synergizes with interleukin 15 priming in driving glycolytic gene transcription and supports human natural killer cell activities.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Natural killer (NK) cells induce apoptosis in infected and transformed cells and produce immunoregulatory cytokines. At this, NK cells operate in inflammatory and tumor environments low in oxygen (hypoxic) and with immunosuppressive properties. In vitro studies of NK cells are, however, commonly performed in ambient air (normoxia).

Publication Title

Short Term Hypoxia Synergizes with Interleukin 15 Priming in Driving Glycolytic Gene Transcription and Supports Human Natural Killer Cell Activities.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact