refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 244 results
Sort by

Filters

Technology

Platform

accession-icon GSE30550
Temporal expression data from 17 health human subjects before and after they were challenged with live influenza (H3N2/Wisconsin) viruses
  • organism-icon Homo sapiens
  • sample-icon 268 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The transcriptional responses of human hosts towards influenza viral pathogens are important for understanding virus-mediated immunopathology. Despite great advances gained through studies using model organisms, the complete temporal host transcriptional responses in a natural human system are poorly understood. In a human challenge study using live influenza (H3N2/Wisconsin) viruses, we conducted a clinically uninformed (unsupervised) factor analysis on gene expression profiles and established an ab initio molecular signature that strongly correlates to symptomatic clinical disease. This is followed by the identification of 42 biomarkers whose expression patterns best differentiate early from late phases of infection. In parallel, a clinically informed (supervised) analysis revealed over-stimulation of multiple viral sensing pathways in symptomatic hosts and linked their temporal trajectory with development of diverse clinical signs and symptoms. The resultant inflammatory cytokine profiles were shown to contribute to the pathogenesis because their significant increase preceded disease manifestation by 36 hours. In subclinical asymptomatic hosts, we discovered strong transcriptional regulation of genes involved in inflammasome activation, genes encoding virus interacting proteins, and evidence of active anti-oxidant and cell-mediated innate immune response. Taken together, our findings offer insights into influenza virus-induced pathogenesis and provide a valuable tool for disease monitoring and management in natural environments.

Publication Title

Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17156
Gene expression signatures of symptomatic respiratory viral infection in adults
  • organism-icon Homo sapiens
  • sample-icon 113 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Diagnosis of acute respiratory viral infection is currentlybased on clinical symptoms and pathogen detection. Use of host peripheral blood gene expression data to classify individuals with viral respiratory infection represents a novel means of infection diagnosis.

Publication Title

Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE52428
Host gene expression signatures of influenza A H1N1 and H3N2 virus infection in adults
  • organism-icon Homo sapiens
  • sample-icon 647 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Diagnosis of influenza A infection is currently based on clinical symptoms and pathogen detection. Use of host peripheral blood gene expression data to classify individuals with influenza A virus infection represents a novel approach to infection diagnosis

Publication Title

A host transcriptional signature for presymptomatic detection of infection in humans exposed to influenza H1N1 or H3N2.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE33341
Gene Expression-Based Classifiers Identify Staphylococcus aureus Infection in Mice and Humans
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 321 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Staphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays and inappropriate antibiotic use. A growing literature suggests the hosts inflammatory response to the pathogen represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection) and was validated in outbred mice (AUC>0.97). A S. aureus classifier derived from a cohort of 95 human subjects distinguished S. aureus blood stream infection (BSI) from healthy subjects (AUC 0.99) and E. coli BSI (AUC 0.82). Murine and human responses to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans (AUC 0.84). Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and 0.94, respectively). The approach described here lends insight into the conserved and disparate pathways utilized by mice and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the host response to it; and identifies new diagnostic and therapeutic avenues.

Publication Title

Gene expression-based classifiers identify Staphylococcus aureus infection in mice and humans.

Sample Metadata Fields

Race

View Samples
accession-icon SRP118780
Functional aspects of meningeal lymphatics in ageing and Alzheimer''s disease [2 of 3]
  • organism-icon Mus musculus
  • sample-icon 80 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Aging is a major risk factor for many neurological pathologies, including Alzheimer's disease (AD). However, the mechanisms underlying brain aging and cognitive decline remain elusive. Body tissues are perfused by interstitial fluid (ISF), which is locally reabsorbed via the lymphatic vascular network. In contrast, the parenchyma of the central nervous system (CNS) is devoid of lymphatic vasculature; in the brain, removal of cellular debris and toxic molecules, such as amyloid beta (A?) peptides, is mediated by a combination of transcellular mechanisms of transport across the blood-brain and blood-cerebrospinal fluid (CSF) barriers, phagocytosis and digestion by resident microglia and recruited monocytes/macrophages, and CSF influx and ISF efflux through a paravascular route. The recent characterization of meningeal lymphatic vessels prompted a reassessment of the conventional pathways of CNS waste clearance. The role of this vasculature in brain function, specifically in the context of aging and AD, is still poorly understood. Here we show that meningeal lymphatic vessels play an essential role in maintaining brain homeostasis by draining macromolecules from the CNS (CSF and ISF) into the cervical lymph nodes. Using pharmacological, surgical, and genetic models we show that impairment of meningeal lymphatic function in adult mice slows paravascular influx of CSF macromolecules and efflux of ISF macromolecules, and induces cognitive impairment. Treatment with a lymphangiogenic factor, vascular endothelial growth factor C (VEGF-C), enhances meningeal lymphatic drainage of CSF macromolecules, improving brain perfusion and learning and memory performance in aged mice. Disruption of meningeal lymphatic vessels in transgenic mouse models of AD promotes amyloid deposition in the meninges, which closely correlates with human meningeal pathology, and aggravates overall disease severity. Our findings suggest that meningeal lymphatic dysfunction may be an aggravating factor in AD pathology and in age-associated cognitive decline. Thus, augmentation of meningeal lymphatic function might be a promising therapeutic target for preventing or delaying age-associated neurological diseases. Overall design: Male C57BL/6J mice (2 months-old) were injected (intra-cisterna magna) with Visudyne (verteporfin for injection), or vehicle as control, and submitted to a step of photoconversion, to induce meningeal lymphatic vessel ablation. This procedure was repeated 2 weeks later to ensure prolonged meningeal lymphatic dysfunction. 2 weeks after the last surgical procedure, mice were subjected to the MWM test. 3 days after, whole hippocampus was macrodissected and total RNA was extracted for sequencing.

Publication Title

Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease.

Sample Metadata Fields

Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP141016
Functional aspects of meningeal lymphatics in ageing and Alzheimer''s disease [3 of 3]
  • organism-icon Mus musculus
  • sample-icon 80 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Aging is a major risk factor for many neurological pathologies, including Alzheimer's disease (AD). However, the mechanisms underlying brain aging and cognitive decline remain elusive. Body tissues are perfused by interstitial fluid (ISF), which is locally reabsorbed via the lymphatic vascular network. In contrast, the parenchyma of the central nervous system (CNS) is devoid of lymphatic vasculature; in the brain, removal of cellular debris and toxic molecules, such as amyloid beta (A?) peptides, is mediated by a combination of transcellular mechanisms of transport across the blood-brain and blood-cerebrospinal fluid (CSF) barriers, phagocytosis and digestion by resident microglia and recruited monocytes/macrophages, and CSF influx and ISF efflux through a paravascular route. The recent characterization of meningeal lymphatic vessels prompted a reassessment of the conventional pathways of CNS waste clearance. The role of this vasculature in brain function, specifically in the context of aging and AD, is still poorly understood. Here we show that meningeal lymphatic vessels play an essential role in maintaining brain homeostasis by draining macromolecules from the CNS (CSF and ISF) into the cervical lymph nodes. Using pharmacological, surgical, and genetic models we show that impairment of meningeal lymphatic function in adult mice slows paravascular influx of CSF macromolecules and efflux of ISF macromolecules, and induces cognitive impairment. Treatment with a lymphangiogenic factor, vascular endothelial growth factor C (VEGF-C), enhances meningeal lymphatic drainage of CSF macromolecules, improving brain perfusion and learning and memory performance in aged mice. Disruption of meningeal lymphatic vessels in transgenic mouse models of AD promotes amyloid deposition in the meninges, which closely correlates with human meningeal pathology, and aggravates overall disease severity. Our findings suggest that meningeal lymphatic dysfunction may be an aggravating factor in AD pathology and in age-associated cognitive decline. Thus, augmentation of meningeal lymphatic function might be a promising therapeutic target for preventing or delaying age-associated neurological diseases. Overall design: Male C57BL/6J mice (2 months-old) were injected (intra-cisterna magna) with Visudyne (verteporfin for injection), or vehicle as control, and submitted to a step of photoconversion, to induce meningeal lymphatic vessel ablation. This procedure was repeated 2 weeks later to ensure prolonged meningeal lymphatic dysfunction. 2 weeks after the last surgical procedure, whole hippocampus was macrodissected and total RNA was extracted for sequencing.

Publication Title

Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease.

Sample Metadata Fields

Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP118778
Functional aspects of meningeal lymphatics in ageing and Alzheimer''s disease [1 of 3]
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Aging is a major risk factor for many neurological pathologies, including Alzheimer's disease (AD). However, the mechanisms underlying brain aging and cognitive decline remain elusive. Body tissues are perfused by interstitial fluid (ISF), which is locally reabsorbed via the lymphatic vascular network. In contrast, the parenchyma of the central nervous system (CNS) is devoid of lymphatic vasculature; in the brain, removal of cellular debris and toxic molecules, such as amyloid beta (A?) peptides, is mediated by a combination of transcellular mechanisms of transport across the blood-brain and blood-cerebrospinal fluid (CSF) barriers, phagocytosis and digestion by resident microglia and recruited monocytes/macrophages, and CSF influx and ISF efflux through a paravascular route. The recent characterization of meningeal lymphatic vessels prompted a reassessment of the conventional pathways of CNS waste clearance. The role of this vasculature in brain function, specifically in the context of aging and AD, is still poorly understood. Here we show that meningeal lymphatic vessels play an essential role in maintaining brain homeostasis by draining macromolecules from the CNS (CSF and ISF) into the cervical lymph nodes. Using pharmacological, surgical, and genetic models we show that impairment of meningeal lymphatic function in adult mice slows paravascular influx of CSF macromolecules and efflux of ISF macromolecules, and induces cognitive impairment. Treatment with a lymphangiogenic factor, vascular endothelial growth factor C (VEGF-C), enhances meningeal lymphatic drainage of CSF macromolecules, improving brain perfusion and learning and memory performance in aged mice. Disruption of meningeal lymphatic vessels in transgenic mouse models of AD promotes amyloid deposition in the meninges, which closely correlates with human meningeal pathology, and aggravates overall disease severity. Our findings suggest that meningeal lymphatic dysfunction may be an aggravating factor in AD pathology and in age-associated cognitive decline. Thus, augmentation of meningeal lymphatic function might be a promising therapeutic target for preventing or delaying age-associated neurological diseases. Overall design: Lymphatic endothelial cells (LECs) were isolated from meninges of adult (2-3 months-old) or old (20-24 months-old) male C57BL/6 mice. Cells were sorted by FACS according to the following phenotype: CD45-CD31+PDPN+.

Publication Title

Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE63990
Profiling of bacterial respiratory infection, viral respiratory infection, and non-infectious illness
  • organism-icon Homo sapiens
  • sample-icon 277 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

A pressing clinical challenge is identifying the etiologic basis of acute respiratory illness. Without reliable diagnostics, the uncertainty associated with this clinical entity leads to a significant, inappropriate use of antibacterials. Use of host peripheral blood gene expression data to classify individuals with bacterial infection, viral infection, or non-infection represents a complementary diagnostic approach.

Publication Title

Host gene expression classifiers diagnose acute respiratory illness etiology.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42726
Expression profile of adult Drosophila melanogaster expressing a self-replicating RNA of Sindbis virus
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Alphaviruses establish a persistent infection in arthropod vectors, which is essential for effective transmission of the virus to vertebrate hosts. The development of persistence in insects is not well understood, although it is thought to involve the innate immune response. Using a transgenic fly system (SINrep) expressing a self-replicating viral genome, we have previously demonstrated the antiviral response of the Drosophila Imd (Immune Deficiency) and Jak-STAT innate immunity pathways.

Publication Title

An antiviral role for antimicrobial peptides during the arthropod response to alphavirus replication.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13610
Basal gene expression in bone (mice and rat)
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Adult rat bones maintain distinct regionalized expression of markers associated with their development.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact