refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 1 of 1 results
Sort by

Filters

Technology

Platform

accession-icon GSE61904
AMPK stimulates skeletal muscle fatty acid utilization during in vivo exercise in mice
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Existing controversy regarding the importance of AMP-activated protein kinase (AMPK) in fatty acid (FA) oxidation in skeletal muscle with contraction/exercise may to some extent pertain to redundant AMPK1 signaling. Using a mouse model lacking both AMPK1 and -2 in skeletal muscle specifically (mdKO) we hypothesized that FA utilization would be impaired in skeletal muscle. Calorimetric analysis showed a similar respiratory exchange ratio (RER) of AMPK WT and mdKO mice when fed normal chow, a high fat diet or with prolonged fasting. Though, in vivo treadmill exercise at the same relative intensity induced a higher RER in mdKO mice compared to WT (WT=0.81; mdKO=0.87; p<0.01) indicating a decreased utilization of FA. Ex vivo incubation of soleus muscle revealed that basal and contraction-induced FA oxidation was impaired in mdKO mice, suggesting that the increased RER during in vivo running exercise originated from decreased skeletal muscle FA oxidation. A decreased muscle protein expression of CD36 and FABPpm (by 17-40%) together with abolishment of TBC1D1 Ser237 phosphorylation in mdKO mice, may result in lower FA transport capacity and FA transport protein translocation to sarcolemma, respectively. In summary this study shows that the catalytically active AMPK subunits are required for normal stimulation of FA utilization during exercise and contractions.

Publication Title

AMPKα is critical for enhancing skeletal muscle fatty acid utilization during in vivo exercise in mice.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact