refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon SRP104287
Perturbation-response genes reveal signaling footprints in cancer gene expression
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Aberrant cell signaling can cause cancer and other diseases and is a focal point of drug research. A common approach is to infer signaling activity of pathways from gene expression. However, mapping gene expression to pathway components disregards the effect of post-translational modifications, and downstream signatures represent very specific experimental conditions. Here we present PROGENy, a method that overcomes both limitations by leveraging a large compendium of publicly available perturbation experiments to yield a common core of Pathway RespOnsive GENes. Unlike existing methods, PROGENy can (i) recover the effect of known driver mutations, (ii) provide or improve strong markers for drug indications, and (iii) distinguish between oncogenic and tumor suppressor pathways for patient survival. Collectively, these results show that PROGENy accurately infers pathway activity from gene expression. Overall design: HEK293?RAF1:ER cells were treated with different stimuli (4OHT, Ly29002, TNFa, TGF1b, IFNg) for different periods of time (1h, 4h).

Publication Title

Perturbation-response genes reveal signaling footprints in cancer gene expression.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE86298
Effect of hyperglycemia on the transcriptional profile of primary human macrophages
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Hyperglycemia is an essential factor leading to micro- and macrovascular diabetic complications. Macrophages are key innate immune regulators of inflammation that undergo 2 major directions of functional polarization: classically (M1) and alternatively (M2) activated macrophages. The aim of the study was to examine the effect of hyperglycemia on transcriptional activation of M0, M1 and M2 human macrophages.

Publication Title

Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact