refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 79 results
Sort by

Filters

Technology

Platform

accession-icon GSE6167
The molecular basis of chilling and freezing stress
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Our analysis of the sfr6 freezing-sensitive mutant (Knight, H., Veale, E., Warren, G. J. and Knight, M. R. (1999). Plant Cell 11, 875-886.) and cls8 (unpublished) chilling-sensitive mutant of Arabidopsis, has revealed that the expression of certain cold-regulated genes is aberrant in both these mutants. In order to understand the molecular basis of chilling and freezing stress in Arabidopsis and also to determine commonalities and differences between these 2 different physiological stress-tolerance processes, we request transcriptome analysis for both of these mutants compared to wild type in one experiment, upon cold treatment and at ambient conditions. The sfr6 mutant shows the most severe phenotype with respect to cold gene expression, but is tolerant to chilling (Knight, H., Veale, E., Warren, G. J. and Knight, M. R. (1999). Plant Cell 11, 875-886.). However, it is unable to cold acclimate and hence is sensitive to freezing. The cls8 mutant, on the other hand, has a relatively mild phenotype relative to the cold-regulated genes we have examined, but is very sensitive to chilling temperatures (15 to 10 degree centigrade). It is thus likely that in cls8 we have not yet identified the genes which are most affected, and which account for the physiological phenotype. Both sfr6 and cls8 have been fine-mapped and are close to being cloned. The cls8 mutant has an altered calcium signature in response to cold which means it is likely to be affected in early signalling, e.g. cold perception itself.We will compare the expression profiles of genes in sfr6, cls8 and Columbia (parental line for both mutants), both at ambient, and after treatment with cold (5 degrees) for 3 hours. This timepoint is designed to capture both rapidly responding genes e.g. CBF/DREB1 transcription factors, and also more slow genes e.g. COR genes (KIN1/2 and LTI78). Pilot northerns confirm that this time point is suitable.This analysis will provide new insight into 2 novel genes required for tolerance to low temperature in Arabidopsis, and additionally will determine the nature of overlap between the separate processes of chilling and freezing tolerance.

Publication Title

The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46084
Gene is expression in 2 mutant alleles of the freezing-sensitive mutant sfr6 subjected to cold.
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The sfr6-1 mutant of Arabidopsis has been shown to be defective in freezing tolerance and fails to express a number of cold-regulated genes to normal wild type levels. The aim of this experiment was to test whether two other mutant alleles, sfr6-2 and sfr6-3 showed similar defects in cold-inducible gene expression.

Publication Title

The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes.

Sample Metadata Fields

Age

View Samples
accession-icon GSE63902
Toxicogenomics profiling of bone marrow from rats treated with topotecan in combination with oxaliplatin: a mechanistic strategy to inform combination toxicity.
  • organism-icon Rattus norvegicus
  • sample-icon 93 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Combinations of anticancer agents may have synergistic anti-tumor effects, but enhanced hematological toxicity often limit their clinical use. We examined whether microarray profiles could be used to compare early molecular responses following a single dose of agents administered individually with that of the agents administered in a combination. Six patterns of co-expressed genes were detected at the 1-hour time point which indicate regulatory expression of genes dependent on the order of the administration. When topotecan is given first, several signal transduction transcription factors associated with cancer or inactivation of a tumor suppressor were co-regulating gene expression. These results suggest alterations in histone biology, chromatin remodeling, DNA repair, bone regeneration, and respiratory and oxidative phosphorylation are among the prominent pathways modulated in bone marrow from animals treated with an oxaliplatin/topotecan combination.

Publication Title

Toxicogenomics profiling of bone marrow from rats treated with topotecan in combination with oxaliplatin: a mechanistic strategy to inform combination toxicity.

Sample Metadata Fields

Sex, Age, Specimen part, Time

View Samples
accession-icon GSE72439
Effect of summer daylight exposure and genetic background on growth in growth hormone deficient children
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene-environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlation of latitude, summer daylight exposure (SDE) was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene-environment interactions in children treated with r-hGH.

Publication Title

Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE42535
Gene expression in cultured bovine ovarian granulosa
  • organism-icon Bos taurus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

The growth of the mammalian ovarian follicle requires the formation of a fluid filled antrum, and maturation and differentiation of the ovarian granulosa cells, largely under the control of Follicle Stimulating Hormone (FSH). Many follicles will regress and die by a process called atresia at this early antral stage. We therefore decided to analyse the gene expression profiles of granulosa cells cultured in the presence or absence of FSH and Tumour Necrosis Factor-alpha (TNF), an apoptotic factor, to simulate the key influences. Different concentratons of FSH and TNFa in granulosa culture were used to determine effective conditions via estradiol and progesterone production, and cell number.

Publication Title

The global effect of follicle-stimulating hormone and tumour necrosis factor α on gene expression in cultured bovine ovarian granulosa cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE108983
Reprogramming of heterologous cells by defined factors to generate lineage-restricted biomolecules
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The ability of transcriptional regulators to drive lineage conversion of somatic cells offers great potential for the treatment of human disease. While current research in this field is focused on the generation of induced pluripotent stem cells or direct lineage transdifferentiation, less attention has been paid to the possibility of reprogramming cells to produce cytokines, growth factors and hormones. To explore the concept of switching on specific target genes in heterologous cells, we developed a model system to screen candidate factors for their ability to activate the archetypal megakaryocyte-specific chemokine platelet factor 4 (PF4) in fibroblasts. We found that co-expression of the transcriptional regulators GATA1 and FLI1 resulted in a significant increase in levels of PF4, which became magnified over time. We also determined that inclusion of a third factor, TAL1, further enhanced upregulation of PF4 expression. Our study therefore identified of TAL1 as an important component in the combination of transcriptional regulators that contribute to megakaryocyte programming, and demonstrated that such combinations can be used to produce potentially beneficial chemokines in readily available heterologous cell types.

Publication Title

Partial reprogramming of heterologous cells by defined factors to generate megakaryocyte lineage-restricted biomolecules.

Sample Metadata Fields

Time

View Samples
accession-icon GSE9107
Expression data of Drosophila 3rd instar larval wing discs taken from strains selected for wing shape.
  • organism-icon Drosophila melanogaster
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

We measured gene expression across the whole genome in a panel of lines selected for a wing shape trait (angular offset). The lines were created in separate experiments, originating from two widely separated populations, and including multiple replicates of one population, but all were created using the same selection regime and trait. Here we evaluate the data with two objectives: 1) to identify candidate wing shape genes for future testing and validation, and 2) to assess variation among lines in the outcome of identical selection regimes

Publication Title

Microarray analysis of replicate populations selected against a wing-shape correlation in Drosophila melanogaster.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28431
Skipsey: Fenclorim safening of Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Wild type Arabidopsis thaliana Col-0 root cultures, were treated with fenclorim or 4-chloro-6-methyl-2-phenylpyrimidine dissolved in acetone to achieve a final concentration of 100uM. The final acetone concentration of 0.1% was replicated in control root cultures. Samples were taken at four and twenty-four hours post addition in biological triplicate. Root cultures were routinely maintained at 25C in the dark.

Publication Title

Xenobiotic responsiveness of Arabidopsis thaliana to a chemical series derived from a herbicide safener.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP039970
Translational profiling of hypothalamic and midbrain neurons that project to the nucleus accumbens.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Neuroanatomical methods enable high-resolution mapping of neural circuitry, but do not allow systematic molecular profiling of neurons based on their connectivity. Here, we report the development of a novel approach for molecularly profiling projective neurons. We show that ribosomes can be labeled with a camelid nanobody raised against GFP and that this system can be engineered to selectively capture translating mRNAs from cells expressing GFP. We generated a transgenic mouse encoding a nanobody-ribosomal protein fusion (Syn-NBL10) and used a retrograde virus (CAV) encoding GFP to immunoprecipitate ribosomes from projection neurons. This enabled us to profile neurons projecting to the nucleus accumbens. The current method provides a new means for profiling neurons based on their projections. Overall design: Translating mRNAs immunoprecipitated from neurons projecting to the nucleus accumbens. Each Input and IP sample corrspond to a pooled group of 6 mice.

Publication Title

Molecular profiling of neurons based on connectivity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP167093
Distinct Adaptive Mechanisms Drive Recovery from Aneuploidy Caused by Loss of the Ulp2 SUMO Protease [RNA-seq]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 49 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In response to acute loss of the Ulp2 SUMO-specific protease, yeast become disomic for chromosome I (ChrI) and ChrXII. Here we report that ChrI disomy, which creates an adaptive advantage in part by increasing the dosage of the Ccr4 deadenylase, was eliminated by extended passaging. Loss of aneuploidy is often accompanied by mutations in essential SUMO-ligating enzymes, which reduced polySUMO-conjugate accumulation. The mRNA levels for almost all ribosomal proteins increases transiently upon initial loss of Ulp2, but elevated Ccr4 levels limit excess ribosome formation. Notably, extended passaging leads to increased levels of many small nucleolar RNAs (snoRNAs) involved in ribosome biogenesis, and higher dosage of three linked ChrXII snoRNA genes suppressed ChrXII disomy in ulp2? cells. Our data reveal that aneuploidy allows rapid adaptation to Ulp2 loss, but long-term adaptation restores euploidy. Cellular evolution restores homeostasis through countervailing mutations in SUMO-modification pathways and regulatory shifts in ribosome biogenesis. Overall design: In these comparisons, the ulp2? cells either carried a WT ULP2 plasmid or empty vector and were passaged for 50 or 500 generations. mRNA profiles of them were generated by sequencing, in triplicate, using Illumina HiSeq 2500 .

Publication Title

Distinct adaptive mechanisms drive recovery from aneuploidy caused by loss of the Ulp2 SUMO protease.

Sample Metadata Fields

Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact