refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 99 results
Sort by

Filters

Technology

Platform

accession-icon SRP069804
Loss of Trex1 in dendritic cells is sufficient to trigger systemic autoimmunity
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Biallelic defects of the gene encoding for the intracellular enzyme 3’ repair exonuclease (Trex)1 cause Aicardi-Goutières syndrome (AGS), a rare monogenic, lupus-like autoimmune disease, while heterozygous Trex1 loss of function alleles are associated with systemic lupus erythematosus (SLE). Trex1-/- mice develop lethal autoimmune multi-organ inflammation, which results from a chronic type I IFN response triggered by intracellular accumulation of a putative nucleic acid substrate of Trex1. This pathogenic nucleic acid is detected by the broadly, but not ubiquitously, expressed cytosolic DNA sensor cGAS, raising the question whether there are specific cell types that respond to Trex1 deficiency by production of IFN and induce autoimmunity. We generated mice with conditional knock out of the Trex1 gene and demonstrated that loss of Trex1 throughout the hematopoietic system and even selective loss in dendritic cells is sufficient to cause IFN release and autoimmunity. B cells showed no transcriptional response to Trex1 deficiency. Trex1-/- keratinocytes produced IFN but did not induce skin inflammation, whereas loss of Trex1 in cardiomyocytes triggered neither IFN response nor pathology. Trex1-deficient neurons and astrocytes did not release IFN in the CNS. In contrast, mice with selective inactivation of Trex1 in long-living CNS macrophages such as microglia locally produced IFN but did not reproduce the mild encephalitis seen in Trex1-/- mice. Collectively, individual cell types differentially respond to the loss of Trex1 and dendritic cells seem promising candidates for experiments addressing the molecular pathomechanism in Trex1 deficiency. Overall design: We sorted CD19-positive B cells from spleens of Trex1fl/fl CD19-Cre+ and Trex1fl/fl CD19-Cre- mice and isolated total RNA for library construction to perform mRNA deep sequencing.

Publication Title

Loss of Trex1 in Dendritic Cells Is Sufficient To Trigger Systemic Autoimmunity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP072526
USP15 regulates type I interferon response in vivo and is required for pathogenesis of microbial and autoimmune neuroinflammation
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Genes and pathways in which inactivation dampens tissue inflammation present new opportunities for understanding the pathogenesis of common human inflammatory diseases, including inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. We identified a mutation in the gene encoding the deubiquitination enzyme USP15 (Usp15L749R) that protected mice against both experimental cerebral malaria (ECM) induced by Plasmodium berghei and experimental autoimmune encephalomyelitis (EAE). Combining immunophenotyping and RNA sequencing in brain (ECM) and spinal cord (EAE) revealed that Usp15L749R-associated resistance to neuroinflammation was linked to dampened type I interferon responses in situ. In hematopoietic cells and in resident brain cells, USP15 was coexpressed with, and functionally acted together with the E3 ubiquitin ligase TRIM25 to positively regulate type I interferon responses and to promote pathogenesis during neuroinflammation. The USP15-TRIM25 dyad might be a potential target for intervention in acute or chronic states of neuroinflammation. Overall design: Sequencing of RNA extracted from target tissue in two experimental neuroinflammation models in wild-type (B6), USP15(L749R) and Trim25 KO mutant mice: (1) brains at day 3 and 5 following Plasmodium berghei ANKA (PbA) infection for the cerebral malaria model (ECM); and (2) spinal cords at day 7 following induction of experimental autoimmune encephalomyelitis (EAE) for B6 and Usp15 mutant mice only.

Publication Title

USP15 regulates type I interferon response and is required for pathogenesis of neuroinflammation.

Sample Metadata Fields

Sex, Specimen part, Treatment, Subject

View Samples
accession-icon GSE61500
Microarray analysis to evaluate the role of USP18 in primary microglia and the microglia cell line BV-2
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Microglia are tissue macrophages of the central nervous system (CNS) that control tissue homeostasis, and as such they are crucially important for organ integrity. Microglia dysregulation is thought to be causal for a group of neuropsychiatric, neurodegenerative and neuroinflammatory diseases, called microgliopathies. However, how the intracellular stimulation machinery in microglia is controlled is poorly understood. By using expression studies, we identified the ubiquitin-specific protease (Usp) 18 in white matter microglia that essentially contributes to microglial quiescence under homeostatic conditions. We further found that microglial Usp18 negatively regulated the activation of STAT1 and concomitant induction of interferon-induced genes thereby disabling the termination of IFN signalling. Unexpectedly, the Usp18-mediated feedback loop was independent from the catalytic domain of the protease but instead required the interacting region of Ifnar2. Additionally, the absence of Ifnar1 completely rescued microglial activation indicating a tonic IFN signal mediated by receptor interactions under non-diseased conditions. Finally, conditional depletion of Usp18 only in myeloid cells significantly enhanced the disease burden in a mouse model of CNS autoimmunity, increased axonal and myelin damage and determined the spatial distributions of CNS lesions that shared the same STAT1 signature as myeloid cells found in active multiple sclerosis (MS) lesions. These results identify Usp18 as novel negative regulator of microglia activation, demonstrate a protective role of the IFNAR pathway for microglia and establish Usp18 as potential therapeutic target for the treatment of MS.

Publication Title

USP18 lack in microglia causes destructive interferonopathy of the mouse brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61499
Microarray analysis to evaluate the function of USP18 in the mouse CNS
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Microglia are tissue macrophages of the central nervous system (CNS) that control tissue homeostasis, and as such they are crucially important for organ integrity. Microglia dysregulation is thought to be causal for a group of neuropsychiatric, neurodegenerative and neuroinflammatory diseases, called microgliopathies. However, how the intracellular stimulation machinery in microglia is controlled is poorly understood. By using expression studies, we identified the ubiquitin-specific protease (Usp) 18 in white matter microglia that essentially contributes to microglial quiescence under homeostatic conditions. We further found that microglial Usp18 negatively regulated the activation of STAT1 and concomitant induction of interferon-induced genes thereby disabling the termination of IFN signalling. Unexpectedly, the Usp18-mediated feedback loop was independent from the catalytic domain of the protease but instead required the interacting region of Ifnar2. Additionally, the absence of Ifnar1 completely rescued microglial activation indicating a tonic IFN signal mediated by receptor interactions under non-diseased conditions. Finally, conditional depletion of Usp18 only in myeloid cells significantly enhanced the disease burden in a mouse model of CNS autoimmunity, increased axonal and myelin damage and determined the spatial distributions of CNS lesions that shared the same STAT1 signature as myeloid cells found in active multiple sclerosis (MS) lesions. These results identify Usp18 as novel negative regulator of microglia activation, demonstrate a protective role of the IFNAR pathway for microglia and establish Usp18 as potential therapeutic target for the treatment of MS.

Publication Title

USP18 lack in microglia causes destructive interferonopathy of the mouse brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61501
THE UBIQUITIN-SPECIFIC PROTEASE 18 CONTROLS MICROGLIA QUIESCENCE UNDER HOMEOSTATIC AND INFLAMMATORY CONDITIONS
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

USP18 lack in microglia causes destructive interferonopathy of the mouse brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24434
Host cell transcriptome response to expression of the human cytomegalovirus (hCMV) 72-kDa immediate-early 1 (IE1) protein
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary infection, establishes life-long persistence in all infected individuals. Acute hCMV infections cause a variety of diseases in humans with developmental or acquired immune deficits. In addition, persistent hCMV infection may contribute to various chronic disease conditions even in immunologically normal people. The pathogenesis of hCMV disease has been frequently linked to inflammatory host immune responses triggered by virus-infected cells. Moreover, hCMV infection activates numerous host genes many of which encode pro-inflammatory proteins. However, little is known about the relative contributions of individual viral gene products to these changes in cellular transcription. We systematically analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major transcriptional activator and antagonist of type I interferon (IFN) signaling, on the human transcriptome. Following expression under conditions closely mimicking the situation during productive infection, IE1 elicits a global type II IFN-like host cell response. This response is dominated by the selective up-regulation of immune stimulatory genes normally controlled by IFN-gamma and includes the synthesis and secretion of pro-inflammatory chemokines. IE1-mediated induction of IFN-stimulated genes strictly depends on tyrosine-phosphorylated signal transducer and activator of transcription 1 (STAT1) and correlates with the nuclear accumulation and sequence-specific binding of STAT1 to IFN-gamma-responsive promoters. However, neither synthesis nor secretion of IFN-gamma or other IFNs seems to be required for the IE1-dependent effects on cellular gene expression. Our results demonstrate that a single hCMV protein can trigger a pro-inflammatory host transcriptional response via an unexpected STAT1-dependent but IFN-independent mechanism and identify IE1 as a candidate determinant of hCMV pathogenicity.

Publication Title

Human cytomegalovirus IE1 protein elicits a type II interferon-like host cell response that depends on activated STAT1 but not interferon-γ.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE464
CNS Regeneration
  • organism-icon Rattus norvegicus
  • sample-icon 542 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Summary: Spinal cord injury (SCI) is a damage to the spinal cord induced by trauma or desease resulting in a loss of mobility or feeling. SCI is characterized by a primary mechanical injury followed by a secondary injury in which several molecular events are altered in the spinal cord often resulting in loss of neuronal function.

Publication Title

Gene profiling in spinal cord injury shows role of cell cycle in neuronal death.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP118315
poly-A RNA profiling of Drosophila neural stem cells (type I NBs) and GMCs of different ages reveal genes involved in cell fate stabilization
  • organism-icon Drosophila melanogaster
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 2000

Description

Drosophila melanogaster neural stem cells (neuroblasts [NBs]) divide asymmetrically by differentially segregating protein determinants into their daughter cells. Although the machinery for asymmetric protein segregation is well understood, the events that reprogram one of the two daughter cells toward terminal differentiation are less clear. In this study, we use time-resolved transcriptional profiling to identify the earliest transcriptional differences between the daughter cells on their way toward distinct fates. By screening for coregulated protein complexes, we identify vacuolar-type H+–ATPase (v-ATPase) among the first and most significantly down-regulated complexes in differentiating daughter cells. We show that v-ATPase is essential for NB growth and persistent activity of the Notch signaling pathway. Our data suggest that v-ATPase and Notch form a regulatory loop that acts in multiple stem cell lineages both during nervous system development and in the adult gut. We provide a unique resource for investigating neural stem cell biology and demonstrate that cell fate changes can be induced by transcriptional regulation of basic, cell-essential pathways. Overall design: Comparison of transcriptomes of wild-type type I NBs and GMCs of different ages (1.5h, 3h or 5h old) isolated by FACS from Drosophila melanogaster larval brains.

Publication Title

Time-resolved transcriptomics in neural stem cells identifies a v-ATPase/Notch regulatory loop.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP075876
Cerebral Organoids Recapitulate Epigenomic Signatures of the Human Fetal Brain
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Organoids derived from human pluripotent stem cells recapitulate the early three-dimensional organization of human brain, but whether they establish the epigenomic and transcriptional programs essential for brain development is unknown. We compared epigenomic and gene regulatory features in cerebral organoids and human fetal brain, using genome-wide, base resolution DNA methylome and transcriptome sequencing. Transcriptomic dynamics in organoids faithfully modeled gene expression trajectories in early-to-mid human fetal brains. We found that early non-CG methylation accumulation at super-enhancers in both fetal brain and organoids marks forthcoming transcriptional repression in the fully developed brain. 74% of 35,627 demethylated regions identified during organoid differentiation overlapped with fetal brain regulatory elements. Interestingly, pericentromeric repeats showed widespread demethylation in multiple types of in vitro human neural differentiation models but not in fetal brain. Our study reveals that organoids recapitulate many epigenomic features of mid-fetal human brain and also identified novel non-CG methylation signatures of brain development. Overall design: MethylC-seq and RNA-seq of Cerebral Organoids differentiation

Publication Title

Cerebral Organoids Recapitulate Epigenomic Signatures of the Human Fetal Brain.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41892
Tetraspanin TSPAN12 regulates tumor growth and metastasis and inhibits -catenin degradation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Ablation of tetraspanin protein TSPAN12 from human MDA-MB-231 cells significantly decreased primary tumor xenograft growth, while increasing tumor apoptosis. Furthermore, TSPAN12 removal markedly enhanced tumor-endothelial interactions and increased metastasis to mouse lungs. TSPAN12 removal from human MDA-MB-231 cells also caused diminished association between FZD4 (a key canonical Wnt pathway receptor) and its co-receptor LRP5. The result likely explains substantially enhanced proteosomal degradation of -catenin, a key effecter of canonical Wnt signalling. Consistent with disrupted canonical Wnt signaling, TSPAN12 ablation altered expression of LRP5, Naked 1 and 2, DVL2, DVL3, Axin 1 and GSK3 proteins. TSPAN12 ablation also altered expression of several genes regulated by -catenin (e.g. CCNA1, CCNE2, WISP1, ID4, SFN, ME1) that may help to explain altered tumor growth and metastasis. In conclusion, these results provide the first evidence for TSPAN12 playing a role in supporting primary tumor growth and suppressing metastasis. TSPAN12 appears to function by stabilizing FZD4-LRP5 association, in support of canonical Wnt-pathway signaling, leading to enhanced -catenin expression and function.

Publication Title

Tetraspanin TSPAN12 regulates tumor growth and metastasis and inhibits β-catenin degradation.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact