refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 99 results
Sort by

Filters

Technology

Platform

accession-icon GSE13833
Transcriptome changes triggered by the synthetic defense elicitors DCA and INA in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

DCA (3,5-Dichloroanthranilic acid) is a newly identified synthetic defense elicitor. To perform a comparative analysis of defense responses triggered by DCA and the structurally related defense inducer INA (2,6-Dichloroisonicotinic acid) Affymetrix chip experiments were performed with Arabidopsis thaliana seedlings treated with one of these two compounds.

Publication Title

The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41925
Transcription factor AP-2 gamma is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We characterzised global changes in gene expresseion between 8 cell embryos and blastocysts to identify potential genes required for blastocyst formation.

Publication Title

Transcription factor AP-2γ is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP001307
Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

In germ cells, Piwi proteins interact with a specific class of small non-coding RNAs, piwi-interacting RNAs (piRNAs). Together, these form a pathway that represses transposable elements, thus safeguarding germ cell genomes. While basic models describe the operation of piRNA pathways, neither the protein compositions of Piwi complexes, the critical protein-protein interactions that drive small RNA production and target recognition, or the precise molecular consequences of conserved localization to germline structures, call nuage, is well understood. We purified the three murine Piwi family proteins, Mili, Miwi, and Miwi2, from mouse germ cells and characterized their interacting protein partners. Piwi proteins were found in complex with Prmt5/Wdr77, an enzyme that di-methylates arginine residues. By immunoprecipitation with specific antibodies and by mass spectrometry, we found that Piwi proteins are arginine methylated at conserved positions in their amino termini. These modifications are essential to direct complex formation with specific Tudor-domain proteins, whose interactions with Piwis can be required for localization of RNP complexes in cytoplasmic nuage, proper piRNA expression, and transposon silencing. Considered together, our findings indicate that arginine methylation drives the assembly of multi-protein machines whose integrity and specific sub-cellular localization is necessary for efficient function of the piRNA pathway. Keywords: gene regulation study Overall design: Total small RNA in embryonic and post-birth mouse testes of tdrd1 and tdrd6 mutants

Publication Title

RNF17 blocks promiscuous activity of PIWI proteins in mouse testes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46500
Gene expression data for three mouse auditory brainstem nuclei at two times of development
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Genome-wide gene expression was obtained in three auditory brainstem nuclei (defined below), at two different ages in mice, postnatal day (P)3 and P14. The primary aim was to identify genes which are differentially expressed between the medial nucleus of the trapezoid body (MNTB) and the superior olive (LSO), at both age groups.

Publication Title

BMP signaling specifies the development of a large and fast CNS synapse.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP095702
Roles of Structural maintenance of chromosome flexible domain containing 1 (Smchd1) in early lineage formation and development in mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The function of Structural maintenance of chromosome flexible domain containing 1 (Smchd1) was examined during mouse preimplantation development using an siRNA knockdown approach. Transient SMCHD1 deficiency during the period between fertilization and morula/early blastocyst stage compromised embryo viability and resulted in reduced cell number, reduced embryo diameter, and reduced nuclear volumes at the morula stage. RNAseq analysis of Smchd1 knockdown morulae revealed aberrant increases in expression of mRNAs related to the trophoblast lineage, indicating SMCHD1 inhibits trophoblast lineage gene expression and promotes inner cell mass formation. siRNA knockdown also reduced expression of cell proliferation genes, including S-phase kinase-associated protein 2 (Skp2). Smchd1 expression was elevated in Caudal type homeobox transcription factor 2 (Cdx2)-/- blastocysts, indicating enriched expression, and further indicating a role in inner cell mass development. These results indicate that Smchd1 plays dual roles in the preimplantation embryo, promoting a lineage-appropriate pattern of gene expression supporting inner cell mass formation, whilst controlling lineage formation and gene expression in the trophectoderm. Overall design: Effects of SMCHD1 siRNA knockdown were tested in mouse embryos

Publication Title

Novel key roles for structural maintenance of chromosome flexible domain containing 1 (Smchd1) during preimplantation mouse development.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon SRP166966
A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys
  • organism-icon Homo sapiens
  • sample-icon 91 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Defining cellular and molecular identities within the kidney is necessary to understand its organization and function in health and disease. Here we demonstrate a reproducible method with minimal artifacts for single-nucleus Droplet-based RNA sequencing (snDrop-Seq) that we use to resolve thirty distinct cell populations in human adult kidney. We define molecular transition states along more than ten nephron segments spanning two major kidney regions. We further delineate cell type-specific expression of genes associated with chronic kidney disease, diabetes and hypertension, providing insight into possible targeted therapies. This includes expression of a hypertension-associated mechano-sensory ion channel in mesangial cells, and identification of proximal tubule cell populations defined by pathogenic expression signatures. Our fully optimized, quality-controlled transcriptomic profiling pipeline constitutes a tool for the generation of healthy and diseased molecular atlases applicable to clinical samples. Overall design: Single-nucleus (sn)Drop-seq was used to generate RNA expression estimates across two kidney regions (cortex and medulla), 15 different individuals, 7 different tissue processing methods, and from tissues acquired from two different institutions (Washington University and University of Michigan through KPMP consortium). From the resulting ~18,000 sequenced nuclei passing QC filtering (>400 <5000 non-MT genes detected, >50 post-QC nuclei per library, >30 nuclei per cluster), we identified 30 different cell populations (see supplementary file UCSD-WU_Single_Nuclei_Cluster_Annotations.csv).

Publication Title

A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP048752
shRNA off target analysis via RNAseq
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

shRNAs were assessed for off-target effects by comparing the gene expression profiles of cells that they had been infected into. shRNAs designed with the shERWOOD algorithm and house in the ultramir microRNA scafold were found to have very little off targeting. Overall design: Purpose: A major detriment to RNAi is off-targeting. We wished to assess the level of off targeting of microRNA (ultramiR) housed shERWOOD shRNAs as compared to similar shRNAs in the TRC collection. Methods: 5 shRNAs targeting each of two genes were infected into the 4T1 cell line. For each gene one shRNA was selected from the TRC collection and one based on the shERWOOD algorithm. For each gene, the exrpession profiles of the corresponding shRNA infected cells were compared using RNAseq. Conclusions: Highly similar profiles were observed between shERWOOD selected shRNAs. TRC shRNAs produced profiles indicative of off-targeting.

Publication Title

A computational algorithm to predict shRNA potency.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP049696
RNAseq of Individual 4T1 Clonal Populations
  • organism-icon Mus musculus
  • sample-icon 54 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The transcriptional profile 23 cell lines derived from single clones of the 4T1 cell lines were assessed with RNAseq. The two clones with a strong propensity to intravasate were found to have 12 genes in common that were overexperessed relative to the other 21 clones. Overall design: Clone RNAseq 1) 23 clonal lines were established using single cell FACs sorting from the 4T1 mammary cancer cell line. 2) After establishing the lines the clones were assesed (in a pooled setting) for their capacity to intravasate the vascular system. 3) Transcriptional profiling was carried out using RNAseq. 4) Two clones were found to be strong intravasators and these were compared to the other clones to identify genes that were overexpressed (as compared to at least half of the other clones in both lines).

Publication Title

A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11220
Timecourse of developing mouse placenta, with placental and decidual tissues profiled separately
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used full genome microarrays to profile the full lifetime of the mouse placenta from embryonic day 8.5 (e8.5), at the time of chorioallantoic fusion, until postnatal day 0 (P0).

Publication Title

Genomic evolution of the placenta using co-option and duplication and divergence.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11222
Placental and decidual timecourse samples normalized and modeled with an undissected e17 sample
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used full genome microarrays to profile the full lifetime of the mouse placenta from embryonic day 8.5 (e8.5), at the time of chorioallantoic fusion, until postnatal day 0 (P0). For these samples, at each stage the fetal placenta and maternal decidual tissues were dissected and profiled separately (See series 1).

Publication Title

Genomic evolution of the placenta using co-option and duplication and divergence.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact