refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 11 results
Sort by

Filters

Technology

Platform

accession-icon GSE68317
Nuclear Factor B inducing kinase activation as a mechanism of pancreatic beta cell failure in obesity
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The NF-B pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic beta cell dysfunction in the metabolic syndrome. While canonical NF-B signaling is well studied, there is little information on the divergent non-canonical NF-B pathway in the context of pancreatic islet dysfunction in diabetes. Here, we demonstrate that pharmacological activation of the non-canonical NF-B inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. Further, we identify NIK as a critical negative regulator of beta cell function as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of non-canonical NF-B components p100 to p52, and accumulation of RelB. Tumor necrosis factor (TNF) and receptor activator of NF-B ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive beta cell intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the non-canonical NF-B transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to beta cell failure. These studies reveal that NIK contributes a central mechanism for beta cell failure in diet-induced obesity.

Publication Title

Nuclear factor κB-inducing kinase activation as a mechanism of pancreatic β cell failure in obesity.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE63358
Expression data from invariant natural killer T (iNKT) cells in spleen and adipose tissue
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Adipose tissue iNKT cells have different functions than iNKT cells in the blood and other organs.

Publication Title

Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP117328
?d T cells producing IL-17A regulate adipose Treg homeostasis and thermogenesis
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

RNA sequencing of PLZF+ and PLZF- ?d T cell subsets from adipose tissue for gene expression analysis Overall design: PLZF+ and PLZF- ?d T cells were sorted from adipose tissue of PLZF-GFP mice for subsequent RNA sequencing and gene-expression analysis. Two replicates for each subset pooled from 10 mice each were used for the study.

Publication Title

γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE13204
Microarray Innovations in LEukemia (MILE) study
  • organism-icon Homo sapiens
  • sample-icon 1492 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13159
Microarray Innovations in LEukemia (MILE) study: Stage 1 data
  • organism-icon Homo sapiens
  • sample-icon 357 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

An International Multi-Center Study to Define the Clinical Utility of MicroarrayBased Gene Expression Profiling in the Diagnosis and Sub-classification of Leukemia (MILE Study)

Publication Title

An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE11135
The MILE (Microarray Innovations In LEukemia) study pre-phase
  • organism-icon Homo sapiens
  • sample-icon 204 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

An international standardization program towards the application of gene expression profiling in routine leukaemia diagnostics: The MILE study pre-phase.

Publication Title

An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP148854
Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Elevated branched chain amino acids (BCAAs) are associated with obesity and insulin resistance. How long-term dietary BCAAs impact late-life health and lifespan is unknown. Here, we show that when dietary BCAAs are varied against a fixed, isocaloric macronutrient background, long-term exposure to high BCAA diets led to hyperphagia, obesity and reduced lifespan. These effects were not due to elevated BCAA per se or hepatic mTOR activation, but rather the shift in balance between dietary BCAAs and other AAs, notably tryptophan and threonine. Increasing the ratio of BCAAs to these AAs resulted in hyperphagia and was linked to central serotonin depletion. Preventing hyperphagia by calorie restriction or pair-feeding averted the health costs of a high BCAA diet. Our data highlight a role for amino acid quality in energy balance and show that health costs of chronic high BCAA intakes were not due to intrinsic toxicity; rather, to hyperphagia driven by AA imbalance. Overall design: 3 animals per sex per diet were used. Mice were fed one of four diets (all 19% total protein, 63% carbohydrate, 18% fat, total energy density 14 kJ/g) varying in BCAA content (BCAA200: twice BCAA content of control diet AIN93G; BCAA100: standard content of BCAAs; and BCAA50 and BCAA20: containing one half and one fifth of standard content of BCAAs), and either euthanized at 15 months of age or maintained for determination of lifespan.

Publication Title

Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE74626
Differential gene expression in neuroblastoma cells after transfection with control siRNA, MYCN siRNA or TFAP4 siRNA.
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We analyed the gene expression profiles after knocking down MYCN or TFAP4. Results showed that transcription factor MYCN and TFAP4 commonly regulats a subset of genes that may contribute to neuroblastoma cells proliferation and migration.

Publication Title

MYCN promotes neuroblastoma malignancy by establishing a regulatory circuit with transcription factor AP4.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71062
Gene expression analysis of BE(2)C cells treated with SSRP1 and MYCN siRNAs
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Agilent-028005 SurePrint G3 Mouse GE 8x60K Microarray (Probe Name version)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma.

Sample Metadata Fields

Age, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE71059
Gene expression analysis of BE(2)C cells treated with SSRP1 siRNA
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconAgilent-028005 SurePrint G3 Mouse GE 8x60K Microarray (Probe Name version), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Amplification of the MYCN oncogene predicts treatment resistance in childhood neuroblastoma. Using a MYC target gene signature that predicts poor neuroblastoma prognosis we identified the histone chaperone, FAcilitates Chromatin Transcription (FACT), as a crucial mediator of the MYC signal and a therapeutic target in the disease. FACT and MYCN expression created a forward feedback loop in neuroblastoma cells that was essential for maintaining mutual high expression. FACT inhibition by the small molecule Curaxin compound, CBL0137, markedly reduced tumor initiation and progression in vivo. CBL0137 exhibited strong synergy with chemotherapy in standard use by blocking repair of DNA damage caused by genotoxic drugs, thus creating a synthetic lethal environment in MYCN amplified neuroblastoma cells and a treatment strategy for MYCN-driven neuroblastoma

Publication Title

Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma.

Sample Metadata Fields

Cell line, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact