refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 197 results
Sort by

Filters

Technology

Platform

accession-icon GSE31564
Gene expression response to bacterial phagocytosis by S2 cells (control and eater RNAi knock down)
  • organism-icon Drosophila melanogaster
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The Drosophila phagocytic receptor Eater is expressed specifically in phagocytic hemocytes. It contributes to host immune defense and is required for survival of bacterial infections. Eater is involved in recognition and phagocytosis of bacteria.

Publication Title

Phagocytosis of bacterial pathogens.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE24904
Snail regulates MyoD binding-site occupancy to direct enhancer switching and differentiation-specific transcription in myogenesis
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Snail regulates MyoD binding-site occupancy to direct enhancer switching and differentiation-specific transcription in myogenesis.

Sample Metadata Fields

Specimen part, Disease, Time

View Samples
accession-icon GSE24811
Time Series of gene expression during the course of myogenic differentiation in mouse skeletal muscle cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In skeletal myogenesis, the transcription factor MyoD activates distinct transcriptional programs in progenitors compared to terminally differentiated cells. Using ChIP-seq and gene expression analyses, we show that in primary myoblasts, Snail-HDAC1/2 repressive complex bind and exclude MyoD from its targets. Notably, Snail binds E-box motifs that are G/C-rich in their central dinucleotides, and such sites are almost exclusively associated with genes expressed during differentiation. By contrast, Snail does not bind the A/T-rich E-boxes associated with MyoD targets in myoblasts. Thus, Snai1-HDAC1/2 prevents MyoD occupancy on differentiation-specific regulatory elements and the change from Snail- to MyoD-binding often results in enhancer switching during differentiation. Furthermore, we show that a regulatory network involving Myogenic Regulatory Factors (MRFs), Snail/2, miR-30a and miR-206 acts as a molecular switch that controls entry into myogenic differentiation. Together, these results reveal a regulatory paradigm that directs distinct gene expression programs in progenitors versus terminally differentiated cells.

Publication Title

Snail regulates MyoD binding-site occupancy to direct enhancer switching and differentiation-specific transcription in myogenesis.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP173388
Single-cell RNA-sequencing of Herpes simplex virus 1-infected cells identifies NRF2 activation as an antiviral program
  • organism-icon Homo sapiens
  • sample-icon 51 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000, NextSeq 500

Description

We describe the viral gene expression cascade at the single-cell level, showing bifurcations and bottleneck states. Host gene expression changes are related to viral transcription. The role of cellular signaling pathways in infection is studied using trajectory analysis and the importance of the Nrf2 transcription factor studied in follow-up experiments. Overall design: Human primary fibroblasts were infected with HSV-1 and single-cell RNA-sequencing was performed at different early time points after infection.

Publication Title

Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE43044
The role of Ldb1 in hemangioblast development: genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43042
The role of Ldb1 in hemangioblast development: genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis (Affymetrix)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The first site exhibiting hematopoietic activity in mammalian development is the yolk sac blood island, which originates from the hemangioblast. Here we performed differentiation assays, as well as genome-wide molecular and functional studies in BL-CFCs to gain insight into the function of the essential Ldb1 factor in early primitive hematopoietic development. We show that the previously reported lack of yolk sac hematopoiesis and vascular development in Ldb1-/- mouse result from a decreased number of hemangioblasts and a block in their ability to differentiate into erythroid and endothelial progenitor cells. Transcriptome analysis and correlation with the genome wide binding pattern of Ldb1 in hemangioblasts revealed a number of direct target genes and pathways misregulated in the absence of Ldb1. The regulation of essential developmental factors by Ldb1 defines it as an upstream transcriptional regulator of hematopoietic/endothelial development. We show the complex interplay that exists between transcription factors and signaling pathways during the very early stages of hematopoietic/endothelial development and the specific signalling occurring in hemangioblasts in contrast to more advanced hematopoietic developmental stages. Finally, by revealing novel genes and pathways, not previously associated with early development, our study provides novel candidate targets to manipulate the differentiation of hematopoietic and/or endothelial cells.

Publication Title

Genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25092
Transcriptional Dominance of Pax7 in Adult Myogenesis Is Due to High-Affinity Recognition of Homeodomain Motifs
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptional dominance of Pax7 in adult myogenesis is due to high-affinity recognition of homeodomain motifs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32266
Mouse Myoblast Pax3, Pax7 overexpression and control
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This data set contains 3 replicates each for a Pax7 overexpression, Pax3 overexpression and an empty vector Control

Publication Title

Transcriptional dominance of Pax7 in adult myogenesis is due to high-affinity recognition of homeodomain motifs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP018014
Circular RNAs are a large class of animal RNAs with regulatory potency (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Circular RNAs (circRNAs) in animals are an enigmatic class of RNAs with unknown function. To systematically explore circRNAs, we sequenced and computationally analyzed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, with oftentimes tissue/developmental stage specific expression. Sequence analysis suggested important regulatory functions for circRNAs. Indeed, we discovered that human circRNA CDR1as is densely bound by miRNA effector complexes and harbors 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebra fish impaired midbrain development similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, indicating previously unrecognized regulatory potential of coding sequences. Overall design: 1 Sample

Publication Title

Circular RNAs are a large class of animal RNAs with regulatory potency.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE74000
Gene expression data from acetaminophen-induced toxicity in human hepatic in vitro systems and clinical liver samples
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we conducted transcriptomics analyses of: (i) liver samples from patients suffering from acetaminophen-induced acute liver failure (n=3) and from healthy livers (n=2) and (ii) hepatic cell systems exposed to acetaminophen, including their respective vehicle controls. The investigated in vitro systems are: HepaRG cells, HepG2 cells and a novel human skinpostnatal stem cell-derived model i.e. human skin-precursors-derived hepatocyte-like cells (hSKP-HPC).

Publication Title

Gene expression data from acetaminophen-induced toxicity in human hepatic <i>in vitro</i> systems and clinical liver samples.

Sample Metadata Fields

Specimen part, Disease stage, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact