refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 45 results
Sort by

Filters

Technology

Platform

accession-icon GSE43651
Regulation of the epithelial adhesion molecule CEACAM1 is essential for palate formation.
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cleft palate results from a mixture of genetic and environmental factors and occurs when the bilateral palatal shelves fail to fuse. The objective of this study was to search for new genes involved in mouse palate formation. Gene expression of murine embryonic palatal tissue was analyzed at the various developmental stages before, during, and after palate fusion using GeneChip? microarrays. Ceacam1 was one of the highly up-regulated genes during and after fusion in palate formation, and this was confirmed by quantitative real-time PCR. Immunohistochemical staining showed that CEACAM1 was expressed at a very low level in palatal epithelium before fusion, but highly expressed in the midline of the palate during and after fusion. To investigate the developmental role of CEACAM1, function-blocking antibody was added to embryonic mouse palate in organ culture. Palatal fusion was inhibited by this function-blocking antibody. To investigate the subsequent developmental role of CEACAM1, we characterized Ceacam1-deficient (Ceacam1-/-) mice. Epithelial cells persisted abnormally at the midline of the embryonic palate even on day E16.0, and palatal fusion was delayed in Ceacam1-/- mice. TGF?3 expression, apoptosis, and cell proliferation in palatal epithelium were not effected in the palate of Ceacam1-/-mice. CEACAM1 expression was down-regulated in Tgfb3-/- palate. However, exogenous TGF?3 did not induce CEACAM1 expression. These results suggest that CEACAM1 has roles in both the initiation of palate formation via epithelial cell adhesion and TGF signaling has some indirect effect on CEACAM1.

Publication Title

Regulation of the epithelial adhesion molecule CEACAM1 is important for palate formation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE19532
Screening of genes involved in chromosome segregation in meiosis I
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Prophase I of male meiosis involves dynamic chromosome segregation processes during early spermatogenesis, including synapsis, meiotic recombination, and cohesion. Genetic defects in genes participating in these processes consistently cause reproduction failure in mice. To identify candidate genes responsible for infertility in humans, we performed expression profiling of mouse spermatogenic cells undergoing meiotic prophase I.

Publication Title

Screening of genes involved in chromosome segregation during meiosis I: toward the identification of genes responsible for infertility in humans.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE35734
Screening of genes involved in chromosome segregation in meiosis I
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Prophase I of meiosis involves dynamic chromosome segregation processes including synapsis, meiotic recombination, and cohesion. Genetic defects in genes participating in these processes consistently cause reproduction failure in mice. To identify candidate genes responsible for infertility or recurrent pregnancy loss in humans, we performed expression profiling of male and female gonads of mice undergoing meiotic prophase I.

Publication Title

Screening of genes involved in chromosome segregation during meiosis I: in vitro gene transfer to mouse fetal oocytes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE89624
Role of the MicroRNA Machinery in Fasting-Induced Gene Expression Changes and Longevity in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The microRNA machinery regulates fasting-induced changes in gene expression and longevity in <i>Caenorhabditis elegans</i>.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE89614
Role of the MicroRNA Machinery in Fasting-Induced Gene Expression Changes and Longevity in C. elegans (mRNA)
  • organism-icon Caenorhabditis elegans
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Intermittent fasting (IF), a dietary restriction regimen, extends the lifespans of C. elegans and mammals by inducing gene expression changes. How fasting induces gene expression changes and longevity remains unclear. MicroRNAs (miRNAs) are small non-coding RNAs (approximately 22 nucleotides) that repress gene expression, and the expression of several miRNAs has been reported to be altered by fasting. In this study, we examined the role of the miRNA machinery in fasting-induced transcriptional changes and longevity in C. elegans. Our miRNA array analyses revealed that the expression levels of numerous miRNAs changed in adult worms after 48 hours of fasting. In addition to these changes, miRNA-mediated silencing complex (miRISC) components, including Argonaute proteins and GW182 proteins, and the miRNA-processing enzyme Drosha/DRSH-1, were up-regulated by fasting. Our lifespan measurements demonstrated that IF-induced longevity was suppressed by knockout or knockdown of miRISC components and was completely inhibited by drsh-1 ablation. Remarkably, drsh-1 ablation inhibited the fasting-induced changes in the expression of the target genes of DAF-16, the insulin/IGF-1 signaling effector. Fasting-induced transcriptome alterations were substantially and modestly suppressed in the drsh-1 null mutant and the null mutant of ain-1, a gene encoding GW182, respectively. These results indicate that components of the miRNA machinery, especially the miRNA-processing enzyme Drosha, play an important role in mediating IF-induced longevity via the regulation of fasting-induced gene expression changes.

Publication Title

The microRNA machinery regulates fasting-induced changes in gene expression and longevity in <i>Caenorhabditis elegans</i>.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10650
HCT116 PCLKC
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The gain of Protocadherin LKC (PCDH24) expression in colon carcinoma cell line HCT116 has been shown to induce contact inhibition, thereby completely abolishing tumor formation in vivo. To clarify the molecular mechanism, we performed DNA microarray analysis and compared gene-expression pattern between control and PCDH24-expressing HCT116 cells. Approximately 2000 genes were apparently changed their expression. Further proteomics analysis using 2-DE/MS confirmed the dramatic changes and provided additional information. We were aware that these changes are quite similar to the changes observed in epithelial-mesenchymal transition (EMT), most drastic changes in development and cancer metastasis. We thus further analyzed these changes using specific antibodies, and found distinct difference between these two phenomena. Among the differences, nuclear translocation of catenin beta 1 (CTNNB1) was inhibited by PCDH24-expression, subsequently some of the downstream nodes were suppressed. Although contact inhibition and cancer metastasis are completely opposite aspect of the cells, we expect that the identified differences will be key nodes to understand the relationship. We also expect that the nodes will be a target to modulate tumors arising stem cell transplantation (SCT), as well as a therapeutic target for cancer metastasis.

Publication Title

PCDH24-induced contact inhibition involves downregulation of beta-catenin signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14555
Divergent Transcriptomic Responses to Aryl Hydrocarbon Receptor Agonists Between Rat and Human Primary Hepatocytes
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 61 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a), Affymetrix Human Genome U133A Array (hgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Divergent transcriptomic responses to aryl hydrocarbon receptor agonists between rat and human primary hepatocytes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE14553
Toxicogenomic Comparison of TCDD and PCB 126 Responsiveness in Primary Human Hepatocytes
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a), Affymetrix Human Genome U133A Array (hgu133a)

Description

(Abstract) Toxicogenomics has great potential for enhancing our understanding of environmental chemical toxicity, hopefully leading to better-informed human health risk assessments. This study employed toxicogenomic technology to reveal species differences in response to two prototypical aryl hydrocarbon receptor (AHR) agonists, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the polychlorinated biphenyl (PCB) congener PCB 126. Dose responses of primary cultures of rat and human hepatocytes were determined using species-specific microarrays sharing over 4,000 gene orthologs. Forty-seven human and 79 rat genes satisfied dose response criteria for both chemicals and were subjected to further analysis including the calculation of EC50 and the relative potency (REP) of PCB 126 for each gene. Only 5 responsive orthologous genes were shared between the two species, yet the geometric mean of the REPs for all rat and human modeled responsive genes were 0.06 (95% Confidence Interval (CI); 0.03-0.1) and 0.002 (95% CI; 0.001-0.005), respectively, suggesting broad species differences in the initial events that follow AHR activation but precede toxicity. This indicates that there are species differences in both the specific genes that responded and the agonist potency and relative potency for those genes. This observed insensitivity of human cells to PCB 126 is consistent with more traditional measurements of AHR activation (i.e., CYP1A1 enzyme activity) and suggests that the species difference in PCB 126 sensitivity is likely due to certain aspects of AHR function. That a species divergence also exists in this expanded AHR-regulated gene repertoire is a novel finding and should help when extrapolating animal data to humans.

Publication Title

Divergent transcriptomic responses to aryl hydrocarbon receptor agonists between rat and human primary hepatocytes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE28440
Gene expression from mouse white, brown, and perivascular adipose tissue
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Thoracic perivascular adipose tissue (PVAT) is a unique adipose depot that likely influences vascular function and susceptibility to pathogenesis in obesity and metabolic syndrome. Surprisingly, PVAT has been reported to share characteristics of both brown and white adipose, but a detailed direct comparison to interscapular brown adipose tissue (BAT) has not been performed. Here we show by full genome DNA microarray analysis that global gene expression profiles of PVAT are virtually identical to BAT, with equally high expression of Ucp-1, Cidea and other genes known to be uniquely or very highly expressed in BAT. PVAT and BAT also displayed nearly identical phenotypes upon immunohistochemical analysis, and electron microscopy confirmed that PVAT contained multilocular lipid droplets and abundant mitochondria. Compared to white adipose tissue (WAT), PVAT and BAT from C57BL/6 mice fed a high fat diet for 13 weeks had markedly lower expression of immune cell-enriched mRNAs, suggesting resistance to obesity-induced inflammation. Indeed, staining of BAT and PVAT for macrophage markers (F4/80, CD68) in obese mice showed virtually no macrophage infiltration, and FACS analysis of BAT confirmed the presence of very few CD11b+/CD11c+ macrophages in BAT (1.0%) in comparison to WAT (31%). In summary, murine PVAT from the thoracic aorta is virtually identical to interscapular BAT, is resistant to diet-induced macrophage infiltration, and thus may play an important role in protecting the vascular bed from thermal and inflammatory stress.

Publication Title

Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP135264
Transcriptomic profiling of trigeminal nucleus caudalis (TNC) and spinal cord dorsal horn (SC)
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA-Sequencing of the trigeminal nucleus caudalis and spinal cord, dorsal horn in male naive rats (Wistar Han) of 10 weeks old Overall design: 6 naive rats were killed after 2 weeks of arrival, both trigeminal nucleus caudalis and spinal cord dorsal horn were dissected using laser capture microdissection of each rat.

Publication Title

Transcriptomic profiling of trigeminal nucleus caudalis and spinal cord dorsal horn.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact