refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 200 results
Sort by

Filters

Technology

Platform

accession-icon SRP159271
Innate mesenchymal TLR4/MyD88 signals promote spontaneous intestinal tumorigenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

This study shows that the TLR4/MyD88 pathway in intestinal mesenchymal cells promotes intestinal carcinogenesis in the APCmin mouse model. Overall design: 3' RNA-Seq (QuantSeq) profiling of ColVIcre+ wt and MyD88 knockout primary mouse intestinal mesenchymal cells before and after treatment with LPS for 6 hours. 3 replicates per group.

Publication Title

Innate Sensing through Mesenchymal TLR4/MyD88 Signals Promotes Spontaneous Intestinal Tumorigenesis.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE15287
Transcriptomic computational analysis of mastic oil-treated Lewis lung carcinomas
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina Mouse Ref-6 V1

Description

Mastic oil from Pistacia lentiscus variation chia, a blend of bioactive terpenes with recognized medicinal properties, has been recently shown to exert anti-tumor activity. Lewis lung carcinoma (LLC) cells are mastic oil-susceptible cells and were used in this work to study the effects of mastic oil at the transcriptomic level.

Publication Title

A transcriptomic computational analysis of mastic oil-treated Lewis lung carcinomas reveals molecular mechanisms targeting tumor cell growth and survival.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE31245
Unique gene expression profile based upon pathologic response in epithelial ovarian cancer
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

PURPOSE:

Publication Title

Unique gene expression profile based on pathologic response in epithelial ovarian cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15641
Gene signatures of progression and metastasis in renal cell cancer
  • organism-icon Homo sapiens
  • sample-icon 92 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

In order to address the progression, metastasis, and clinical heterogeneity of renal cell cancer (RCC), transcriptional profiling with oligonucleotide microarrays (22,283 genes) was done on 49 RCC tumors, 20 non-RCC renal tumors, and 23 normal kidney samples. Samples were clustered based on gene expression profiles and specific gene sets for each renal tumor type were identified. Gene expression was correlated to disease progression and a metastasis gene signature was derived. Gene signatures were identified for each tumor type with 100% accuracy. Differentially expressed genes during early tumor formation and tumor progression to metastatic RCC were found. Subsets of these genes code for secreted proteins and membrane receptors and are both potential therapeutic or diagnostic targets. A gene pattern ("metastatic signature") derived from primary tumors was very accurate in classifying tumors with and without metastases at the time of surgery. A previously described "global" metastatic signature derived by another group from various non-RCC tumors was validated in RCC. Unlike previous studies, we describe highly accurate and externally validated gene signatures for RCC subtypes and other renal tumors. Interestingly, the gene expression of primary tumors provides us information about the metastatic status in the respective patients and has the potential, if prospectively validated, to enrich the armamentarium of diagnostic tests in RCC. We validated in RCC, for the first time, a previously described metastatic signature and further showed the feasibility of applying a gene signature across different microarray platforms. Transcriptional profiling allows a better appreciation of the molecular and clinical heterogeneity in RCC.

Publication Title

Gene signatures of progression and metastasis in renal cell cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE75588
Transcriptomic analysis of Human Umbilical Vein Endothelial Cells (HUVEC) in response to compound treatment
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Human Umbilical Vein Endothelial Cells were treated with three newly synthesized compounds and DMSO as vehicle. Total RNA was isolated 6 and 24h after treatment and gene expression analysis was performed. Three independent experiments were performed, corresponding to rep1, rep2 and rep3. Experiment 1 (rep1) contained all substances at both time points tested. Experiment 2 (rep2) contained two of the compounds and control DMSO at both time points. Experiment 3 (rep3) contained the third compound and control DMSO at both time points.

Publication Title

Novel pyrazolopyridine derivatives as potential angiogenesis inhibitors: Synthesis, biological evaluation and transcriptome-based mechanistic analysis.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon E-MEXP-958
Transcription profiling of human wild type and deltaTOR-containing hepatocyte-like cells to compare total RNA and polysome-bound RNA populations upon hepatocytic differentiation
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Comparison of Total RNA and Polysome-bound RNA populations in deltaTOR containing cells and control cells upon hepatocyitc differentiation.

Publication Title

Mammalian target of rapamycin activation impairs hepatocytic differentiation and targets genes moderating lipid homeostasis and hepatocellular growth.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE43334
hCAF1/CNOT7 regulates interferon signaling by targeting STAT1
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Stringent regulation of the interferon signaling pathway is essential for maintaining the immune response to pathogens and tumors. The transcription factor STAT1 is a crucial mediator of this response. Here we show that hCAF1/CNOT7 regulates class I and II interferon pathways at different crucial steps. In resting cells hCAF1 can control STAT1 trafficking by interacting with the latent form of STAT1 in the cytoplasm. IFN treatment induces STAT1 release, suggesting that hCAF1 may shield cytoplasmic STAT1 from undesirable stimulation. Consistent, hCAF1 silencing enhances STAT1 basal promoter occupancy associated with increased expression of a subset of STAT1-regulated genes. Consequently, hCAF1 knockdown cells exhibit an increased protection against viral infection and reduced viral replication. Furthermore, hCAF1 participates in the extinction of the IFN signal, through its deadenylase activity, by speeding up the degradation of some STAT1-regulated mRNAs. Since abnormal and unbalanced JAK/STAT activation is associated with immune disorders and cancer, hCAF1 could play a major role in innate immunity and oncogenesis, contributing to tumor escape.

Publication Title

hCAF1/CNOT7 regulates interferon signalling by targeting STAT1.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE87433
Hyperglycemic Memory New insights into a thought to be known topic
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Hyperglycemic memory is part of the pathogenesis of diabetic retinopathy. We established a novel mouse model of intermediate-term hyperglycemic memory and demonstrated that changes in gene expression and microvascular damage in the neurovascular unit of the diabetic retina persist after euglycemic reentry, indicating memory.

Publication Title

Hyperglycaemic memory affects the neurovascular unit of the retina in a diabetic mouse model.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE77104
Expression data from cultured mouse macrophages treated with fatty acids or LPS
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The goal of this study was to compare the transcriptional responses of mouse macrophages treated with unsaturated or saturated fatty acids to macrophages treated with LPS to stimulate classical inflammatory activation.

Publication Title

Saturated Fatty Acids Engage an IRE1α-Dependent Pathway to Activate the NLRP3 Inflammasome in Myeloid Cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE26267
Comparison of hepatic gene expression between short-term calorie restricted wild-type and Dgat1 deficient middle-aged female mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Leanness is associated with increased lifespan and is linked to favorable metabolic conditions promoting life extension.

Publication Title

Deficiency of the lipid synthesis enzyme, DGAT1, extends longevity in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact