refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 126 results
Sort by

Filters

Technology

Platform

accession-icon GSE45818
Differential Gene Regulation during murine in vivo heart ischemia comparing wildtype and Per2 deficient mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Disruption of peripheral circadian rhyme pathways dominantly leads to metabolic disorders. Studies on circadian rhythm proteins in the heart indicated a role for Clock or Per2 in cardiac metabolism. In fact, Per2-/- mice have larger infarct sizes with a deficient lactate production during myocardial ischemia. To test the hypothesis that cardiac Per2 represents an important regulator of cardiac metabolism during myocardial ischemia, we performed lactate measurements during reperfusion in Per1-/-, Per2-/- or wildtype mice followed by gene array studies using various ischemia-reperfusion protocols comparing wildtype and Per2-/- mice. Lactate measurements in whole blood confirmed a dominant role of Per2 for lactate production during myocardial ischemia. Surprisingly, high-throughput gene array analysis of eight different conditions on one 24-microarray plate revealed dominantly lipid metabolism as differentially regulated pathway in wildtype mice when compared to Per2-/-. In all treatment groups, the enzyme enoyl-CoA hydratase, which is essential in fatty acid beta-oxidation, was regulated in wildtype animals only. Studies using nuclear magnet resonance imaging (NMRI) confirmed altered fatty acid populations with higher mono-unsaturated fatty acid levels in hearts from Per2-/- mice. Unexpectedly, studies on gene regulation during reperfusion revealed solely pro inflammatory genes as differentially regulated 'Per2-genes'. Subsequent studies on inflammatory markers showed increasing IL6 or TNFa levels during reperfusion in Per2-/- mice. In summary, these studies reveal a novel role of cardiac Per2 for fatty acid metabolism or inflammation during myocardial ischemia and reperfusion.

Publication Title

Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE4222
Metabolic regulation in the lactating mammary gland:A lipid synthesizing machine
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The mammary gland of the lactating mouse synthesizes and secretes milk lipid equivalent to its entire body weight in a single 20 day lactation cycle, making it one of the most active lipid synthetic organs known. To test the hypothesis that multiple metabolic control points and potential regulatory mechanisms are involved in activating lipid and lactose synthesis at the onset of lactation we compared the mammary transcriptome of 130 genes involved in glucose metabolism between late pregnancy and early lactation and in response to dietary fat. We utilized data obtained from microarray analysis of mammary glands from quadruplicate FVB mice at pregnancy day 17, and lactation day 2. Diets containing 8% or 40% lipid were fed from lactation days 5 to 10 and mammary glands and livers of triplicate FVB mice prepared for microarray analysis. We also compared the metabolome obtained from magnetic resonance spectroscopy of flash frozen glands of the mammary gland at day 17 of pregnancy with that at day 2 of lactation. The results provide a global picture of the multiple metabolic strategies utilized to turn a quiescent organ into an incredibly efficient machine for massive but balanced lipid and lactose synthesis and implicate the transcription factor SREBP-1c in regulation of part of the pathway.

Publication Title

Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47714
Osteotropism in breast cancer metastasis
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Breast cancer metastases develop in the bone more frequently than any other site, and are a common cause of morbidity in the form of bone pain, pathological fractures, nerve compression, and life-threatening hypercalcemia. Despite ongoing research efforts, the molecular and cellular mechanisms that regulate breast cancer cell homing to and colonization of the bone as well as resultant pathological bone alteration remain poorly understood. To identify key mediators promoting breast cancer metastasis to bone, we utilized an immunocompetent, syngeneic murine model of breast cancer metastasis employing the mammary tumor cell line NT2.5. Following intracardiac injection of NT2.5 cells in neu-N mice, metastases developed in the bone, liver, and lung, closely mimicking the anatomical distribution of metastases in breast cancer patients. Using an in vivo selection process, we established NT2.5 sub-lines demonstrating an enhanced ability to colonize the bone and liver. Genome-wide cDNA microarray analysis comparing gene expression between parental NT2.5 cells and established sub-lines was performed.

Publication Title

Identification of prospective factors promoting osteotropism in breast cancer: a potential role for CITED2.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27128
Expression levels in strained vs. non-strained Calu-3 lung epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Ventilator induced lung injury can lead to serious conditions like ARDS which are associated with a high mortality (around 30%, Stapleton et al., Chest, 2005). We hypothesized that changes of expression levels of different genes would lead us to the identification of critical target genes, which might influence the inflammation and outcome associated with this condition.

Publication Title

HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium.

Sample Metadata Fields

Disease, Cell line, Treatment

View Samples
accession-icon SRP004637
Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression (RNA-Seq data)
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII, IlluminaGenomeAnalyzer

Description

Noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease and to reveal uncharacterized aspects of tumor biology. Here we discover 121 unannotated prostate cancer–associated ncRNA transcripts (PCATs) by ab initio assembly of high-throughput sequencing of polyA+ RNA (RNA-Seq) from a cohort of 102 prostate tissues and cells lines. We characterized one ncRNA, PCAT-1, as a prostate-specific regulator of cell proliferation and show that it is a target of the polycomb repressive complex 2 (PRC2). We further found that patterns of PCAT-1 and PRC2 expression stratified patient tissues into molecular subtypes distinguished by expression signatures of PCAT-1–repressed target genes. Taken together, our findings suggest that PCAT-1 is a transcriptional repressor implicated in a subset of prostate cancer patients. These findings establish the utility of RNA-Seq to identify disease-associated ncRNAs that may improve the stratification of cancer subtypes. Overall design: 21 prostate cell lines sequenced on the Illumina Genome Analyzer and GAII. Variable number of replicates per sample. RNA-Seq data from prostate cancer tissues used in this study will be made available on dbGAP.

Publication Title

Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2039
FACS purified cortical projection neurons
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

3 subtypes of cortical projection neurons were purified by fluorescence-activated cell sorting at 4 different stages of development from mouse cortex. A detailed description of the data set is described in Arlotta, P et al (2005).

Publication Title

Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE78501
Gene expression profiling of genes differentially expressed by oral carcinoma Ca9-22 and SLPI-deficient Ca9-22 (SLPI) cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used the myoma model in conjunction with gene expression profiling with microarray data as an efficient tool for high throughput analysis and to screen for differentially expressed genes. Our aim was to identify candidates playing an important role in SLPI and/or MMP-promoted tumor invasion by comparing oral carcinoma Ca9-22 cells, which highly express secretory leukocyte protease inhibitor (SLPI) gene, with SLPI-deficient Ca9-22 cells.

Publication Title

Human uterus myoma and gene expression profiling: A novel in vitro model for studying secretory leukocyte protease inhibitor-mediated tumor invasion.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE9709
Human induced pluripotent stem (iPS) cells from neonatal skin derived cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Induction of germline-competent pluripotent stem cells from mouse fibroblasts has been achieved by the ectopic expression of four genes (Oct3/4, Sox2, c-Myc and Klf4). If this method can be applied to humans for the generation of personalized human pluripotent stem cells, it would greatly facilitate the therapeutic application of stem cells by avoiding the problem of immune rejection by the recipient associated with allograft transplants. Here we show that the ectopic expression of the same four genes in human neonatal skin derived cells is sufficient to induce pluripotent stem cells indistinguishable from human embryonic stem cells in morphology, gene expression, DNA methylation, teratoma formation and long term self-renewal ability. Extensive analysis of colonies generated by ectopic expression of these four genes indicates the presence of considerable heterogeneity in the induced colonies. These results provide a new finding to generate human induced pluripotent stem cells from postnatal somatic tissues.

Publication Title

Heterogeneity of pluripotent marker gene expression in colonies generated in human iPS cell induction culture.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE83980
Gene expression profiles in mouse embryonic fibroblasts (MEFs) derived from BCL11B-KO mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The differentiation of preadipocytes into adipocytes is controlled by several transcription factors, including peroxisome proliferator-activated receptor (PPAR) and CCAAT/enhancer-binding protein (C/EBP), which are known as master regulators of adipogenesis. BCL11B is a zinc finger-type transcription factor that regulates the development of the skin and central nervous and immune systems. Here, we found that BCL11B was expressed in the white adipose tissue (WAT), particularly the subcutaneous WAT and that BCL11B/ mice had a reduced amount of subcutaneous WAT. During adipogenesis, BCL11B expression transiently increased in 3T3-L1 preadipocytes and mouse embryonic fibroblasts (MEFs). The ability for adipogenesis was reduced in BCL11B knockdown 3T3-L1 cells and BCL11B/ MEFs, whereas the ability for osteoblastogenesis was unaffected in BCL11B/ MEFs. Luciferase reporter gene assays revealed that BCL11B stimulated C/EBP activity. Furthermore, the expression of downstream genes of the Wnt/-catenin signaling pathway was not suppressed in BCL11B/ MEFs during adipogenesis. Thus, this study identifies BCL11B as a novel regulator of adipogenesis, which works, at least in part, by stimulating C/EBP activity and suppressing the Wnt/-catenin signaling pathway.

Publication Title

Identification of BCL11B as a regulator of adipogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52998
Adenovirus promotes host cell anabolic glucose metabolism via MYC activation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Adenovirus infection leads to increased glycolytic metabolism in host cells. Expression of a single gene product encoded within the E4 early transcription region, E4ORF1, is sufficient to promote increased glycolytic flux in cultured epithelial cells.

Publication Title

Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact