refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 252 results
Sort by

Filters

Technology

Platform

accession-icon GSE47478
Transcriptional responses of wild-type and Gcn2-/- Th17 cells to halofuginone and rapamycin
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This study was designed to evaluate similarities and differences between transcriptional responses of developing Th17 cells to the prolyl-tRNA synthetase inhibitor, halofuginone, and the mTOR inhibitor, rapamycin. Further comparisons between wild-type and Gcn2-/- Th17 cells allow for investigation into which gene modules regulated by halofuginone or rapamycin treatment require Gcn2.

Publication Title

Halofuginone-induced amino acid starvation regulates Stat3-dependent Th17 effector function and reduces established autoimmune inflammation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP159510
Identification of Bmi1 regulated genes in pro-B cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report differences in gene expression between WT and Bmi1 KO pro-B cells. Overall design: RNA profiles from WT and Bmi1 KO pro-B cells were generated in duplicate.

Publication Title

Impaired Expression of Rearranged Immunoglobulin Genes and Premature p53 Activation Block B Cell Development in BMI1 Null Mice.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE73073
Expression data comparing KRas(G12D/+);CreT, R26(H1047R/+);KRas(G12D/+);CreT, and MMTV-Neu mouse mammary tumors
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Breast Cancer (BC) has been associated with alterations in signaling through a number of growth factor and hormone regulated pathways. Mouse models for metastatic BC have been developed using oncoproteins that activate PI3K, Stat3 and Ras signaling. To determine the role of each pathway, we analyzed mouse mammary tumor formation when they were activated singly or pairwise.

Publication Title

Ras Signaling Is a Key Determinant for Metastatic Dissemination and Poor Survival of Luminal Breast Cancer Patients.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23310
Uncovering Genes and Regulatory Pathways Related to Urinary Albumin Excretion in Mice
  • organism-icon Mus musculus
  • sample-icon 173 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Identifying the genes underlying quantitative trait loci (QTL) for disease has proven difficult, mainly due to the low resolution of the approach and the complex genetics involved. However, recent advances in bioinformatics and the availability of genetic resources now make it possible to narrow the genetic intervals and test candidate genes. In addition to identifying the causative genes, defining the pathways that are affected by these QTL is of major importance as it can give us insight into the disease process and provide evidence to support candidate genes. In this study we mapped three significant and one suggestive QTL on Chromosomes (Chrs) 1, 4, 15, and 17, respectively, for increased albumin excretion (measured as albumin-to-creatinine ratio) in a cross between the MRL/MpJ and SM/J mouse inbred strains. By combining data from several sources and by utilizing gene expression data, we identified Tlr12 as a likely candidate for the Chr 4 QTL. Through the mapping of 33,881 transcripts measured by microarray on kidney RNA from each of the 173 male F2 animals, we identified several downstream pathways associated with these QTL. Among these were the glycan degradation, leukocyte migration, and antigen presenting pathways. We demonstrate that by combining data from multiple sources, we can identify not only genes that are likely to be causal candidates for QTL, but also the pathways through which these genes act to alter phenotypes. This combined approach provides valuable insights into the causes and consequences of renal disease.

Publication Title

Uncovering genes and regulatory pathways related to urinary albumin excretion.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE44651
Laser Capture Microdissection isolation of preovulatory granulosa cells from WT and bERKO ovaries
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Determining the spatial and temporal expression of genes involved in the ovulatory pathway is critical for the understanding of the role of each estrogen receptor in the modulation of folliculogenesis and ovulation. Estrogen receptor (ER) is highly expressed in ovarian granulosa cells and mice lacking ER (ERKO) are subfertile due to inefficient ovulation. Previous work has focused on isolated granulosa cells or cultured follicles and while informative, provides confounding results due to the heterogeneous cell types present including granulosa, theca and oocytes and exposure to in vitro conditions. Herein, we isolated preovulatory granulosa cells from WT and ER-null mice using laser capture microdissection to examine the genomic transcriptional response downstream of PMSG (mimicking FSH) and PMSG/hCG (mimicking LH) stimulation. This allows for a direct comparison of in vivo granulosa cells at the same stage of development from both WT and ER-null ovaries. ER-null granulosa cells showed altered expression of genes known to be regulated by FSH (Akap12 and Runx2) as well as not previously reported (Arnt2 and Pou5f1) in WT granulosa cells. Our analysis also identified 304 genes not previously associated with ER in granulosa cells. LH responsive genes including Abcb1b and Fam110c show reduced expression in ER-null granulosa cells; however novel genes including Rassf2 and Megf10 were also identified as being downstream of LH signaling in granulosa cells. Collectively, our data suggests that granulosa cells from ER-null ovaries may not be appropriately differentiated and are unable to respond properly to gonadotropin stimulation

Publication Title

The absence of ER-β results in altered gene expression in ovarian granulosa cells isolated from in vivo preovulatory follicles.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP175072
Safety profiling of genetically engineered Pim-1 kinase overexpression for oncogenicity risk in human c-kit+ cardiac interstitial cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Bulk RNA-seq to profile of c-kit+ cardiac interstitial cells, comparing the transcriptomes of Pim-1 enhanced cardiac progenitor cells and transfection control Overall design: Transcriptional profiling of Pim-1 enhanced human derived cardiac interstitial cells by bulk RNA-Seq

Publication Title

Safety profiling of genetically engineered Pim-1 kinase overexpression for oncogenicity risk in human c-kit+ cardiac interstitial cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE65461
Transcriptome changes following loss of Apc in the intestine
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Nearly all colorectal cancers have dysregulated Wnt signalling, predominantly through the mutation of the Apc (Adenomatous Polyposis Coli) gene. Therefore it is of vital importance to elucidate the key Wnt target genes in intestinal cells in vivo. We have used a novel inducible cre-lox based murine system (designated ApcFlox) to investigate the consequences of perturbation of Wnt signalling following inactivation of Apc in vivo within 100% of the intestinal epithelium. We have employed microarray analysis at 3 time points within our ApcFlox system (Day 3 prior to the onset of phenotype, day 4 the establishment of the phenotype and day 5 gross phenotype of altered proliferation, differentiation and migration) and from adenomas arising in the ApcMin/+ background allowing us characterise Wnt/beta-catenin target genes based on their expression profiles during different stages of intestinal tumourigenesis. Furthermore, we have employed microarray analysis using livers from our ApcFlox system and have demonstrated that there is very little overlap in the Wnt target genes induced by Apc loss in the liver and the intestine. More importantly, we have been able to determine a novel set of putative Wnt/beta-catenin target genes which are upregulated at both early and late stages of tumourigenesis in the intestine and may represent novel therapeutic targets in colon cancer.

Publication Title

Hunk/Mak-v is a negative regulator of intestinal cell proliferation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE95283
Estrogen signaling and fatty liver disease
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We propose comparing liver gene expression of WT and female ERKO mice early in the high-fat feeding period to animals fed a regular chow diet. Analyzing liver tissue before the fatty liver disease phenotype becomes severe will allow identification of target genes which may be causal.

Publication Title

Hormone signaling and fatty liver in females: analysis of estrogen receptor α mutant mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE84392
Comparison between Nestin+ and Nestin- Ptch1 deficient GNPs
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The intermediate filament protein Nestin serves as a biomarker for stem cells and has been used to identify subsets of cancer stem-like cells. However, the mechanistic contributions of Nestin to cancer pathogenesis are not understood. Here we report that Nestin binds the hedgehog pathway transcription factor Gli3 to mediate the development of medulloblastomas of the hedgehog subtype. In a mouse model system, Nestin levels increased progressively during medulloblastoma formation resulting in enhanced tumor growth. Conversely, loss of Nestin dramatically inhibited proliferation and promoted differentiation. Mechanistic investigations revealed that the tumor-promoting effects of Nestin were mediated by binding to Gli3, a zinc finger transcription factor that negatively regulates hedgehog signaling. Nestin binding to Gli3 blocked Gli3 phosphorylation and its subsequent proteolytic processing, thereby abrogating its ability to negatively regulate the hedgehog pathway. Our findings show how Nestin drives hedgehog pathway-driven cancers and uncover in Gli3 a therapeutic target to treat these malignancies.

Publication Title

Nestin Mediates Hedgehog Pathway Tumorigenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41410
Co-expression of genes with ERG in prostate cancers and cell lines
  • organism-icon Homo sapiens
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact