refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 252 results
Sort by

Filters

Technology

Platform

accession-icon GSE56352
Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We analyzed transcriptional changes in 4 prostate cancer cell lines following treatment with the BET inhibitor I-BET762 using Affymetrix Human Genome U133 Plus 2.0 Arrays.

Publication Title

Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE112282
Gene expression changes induced by the BET inhibitor GSK525762 and/or the MEK inhibitor trametinib in cancer cell lines.
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptional changes were analyzed in two colorectal cancer, two pancreatic cancer, and one small cell lung cancer cell line following treatment with the BET inhibitor GSK525762 and/or the MEK inhibitor trametinib using Affymetrix Human Genome U133 Plus 2.0 Arrays.

Publication Title

MEK inhibitors overcome resistance to BET inhibition across a number of solid and hematologic cancers.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE40972
EZH2 Inhibition as a Therapeutic Strategy for Lymphoma with EZH2 Activating Mutations
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE40971
Gene expression profiling of EZH2 mutant and wild type DLBCL cell lines treated with EZH2 inhibitor
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We studied transcriptional changes by Affymetrix human microarrays in DLBCL cell lines as a result of treatment with GSK126, a potent, highly-selective, SAM-competitive, small molecule inhibitor of EZH2

Publication Title

EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE41239
Gene expression profiling of two DLBCL cell lines upon shRNA mediated knockdown of EZH2
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We studied transcriptional changes by Affymetrix human microarrays in 2 DLBCL cell lines as a result of shRNA mediated knockdown of EZH2.

Publication Title

EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP067214
Human RNase L Tunes Gene Expression by Selectively Destabilizing the MicroRNA-Regulated Transcriptome
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The goal of this study was to map the pathway of mRNA decay by human RNase L Methods: Total RNA was extracted (RNeasy kit, Qiagen). RNA integrity was verified by an RNA 6000 Nano Chip, using BioAnalyzer and 2100 Expert software (Agilent Technologies). The mRNA was enriched by oligo-dT pulldown from total RNA, followed by fragmentation, adapter ligation, PCR amplification, and finally sequencing on Illumina HiSeq 2000 platform. For sequencing introns, the oligo-dT pulldown step was replaced with Ribo-Zero rRNA removal (Illumina). Sequencing reads were mapped to the human genome hg19 using TopHat 2 set to map stranded reads with default parameters. Mapped read counts were obtained using HTseq-count run in union mode. Results: We developed an approach for transcriptome-wide profiling of RNase L activity in human cells and identified hundreds of direct RNA targets and non-targets. We show that this RNase L-dependent decay (RLDD) selectively affects transcripts regulated by miR-17/miR-29/miR-200 and other microRNAs that function as suppressors of mammalian cell adhesion and proliferation. RNase L mimics the effects of these microRNAs and acts as a suppressor of proliferation and adhesion in mammalian cells. Conclusions: Our data suggest that RLDD serves to establish an anti-proliferative state via destabilization of the microRNA-regulated transcriptome. Overall design: Human mRNA profiles from HeLa, T47D and HAP1 cells were generated by deep sequencing using Illumina Illumina HiSeq 2000.

Publication Title

Human RNase L tunes gene expression by selectively destabilizing the microRNA-regulated transcriptome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP061538
T cell help controls the speed of the cell cycle in germinal center B cells.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The germinal center (GC) is a microanatomical compartment wherein high-affinity antibody-producing B cells are selectively expanded. B cells proliferate and mutate their antibody genes in the dark zone (DZ) of the GC and are then selected by T cells in the light zone (LZ) on the basis of affinity. Here, we show that T cell help regulates the speed of cell cycle phase transitions and DNA replication of GC B cells. Genome sequencing and single-molecule analyses revealed that T cell help shortens S phase by regulating replication fork progression while preserving the relative order of replication origin activation. Thus, high-affinity GC B cells are selected by a mechanism that involves prolonged dwell time in the DZ where selected cells undergo accelerated cell cycles. Overall design: To determine whether GC B cells receiving high levels of T cell help show a specific change in gene expression, we compared DZ cells in the G1 phase of the cell cycle from aDEC-OVA and control aDEC-CS treated GCs using a fluorescent ubiquitination-based cell cycle indicator (Fucci-tg). RNA sequencing revealed that T cell-mediated selection produced an increase in gene expression programs associated with the cell cycle, metabolism, including the metabolism of nucleotides, and genes downstream of c-Myc and the E2F transcription factors.

Publication Title

HUMORAL IMMUNITY. T cell help controls the speed of the cell cycle in germinal center B cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17438
Transcriptional profiling of 77 tissue samples from germ-free and conventionally raised mice.
  • organism-icon Mus musculus
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Whole-transcriptome survey of gene expression differences between germ-free (GF) and conventionally raised (CONV-R) mice.

Publication Title

Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP172824
RNA-seq of WT and Nocturnin knockout A549 cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

mRNA regulation by the circadian protein Nocturnin in A549 cells. Overall design: Total RNA from WT and NOCT KO A549 cells were subject to poly-A pulldown and RNA-seq.

Publication Title

The metabolites NADP<sup>+</sup> and NADPH are the targets of the circadian protein Nocturnin (Curled).

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE29367
Expression data from human squamous cell lung cancer line HARA and highly bone metastatic subline HARA-B4.
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We investigated the molecular mechanisms for osteolytic bone metastasis by selecting human lung cancer cell line subpopulations with elevated metastatic activity and validating genes that are overexpressed in these cells. A bone-seeking squamous lung cancer cell line (HARA-B4) was established by sequentially injecting parental HARA cells into the left ventricle of male 5-week-old nude mice 4 times.

Publication Title

Involvement of CXCL14 in osteolytic bone metastasis from lung cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact