refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 252 results
Sort by

Filters

Technology

Platform

accession-icon GSE36165
Drug efficacy reprogramming against aggressive human prostate cancer
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We enriched for prostate cancer cells by the selection system used in human iPS purification. Gene expression signature-based chemical prediction enabled us to identify candidate drugs for reverting the EOS (early transposon promoter, OCT4 and SOX2 enhancer) signature with chemoresistance into a chemosensitive phenotype.

Publication Title

Identification of drug candidate against prostate cancer from the aspect of somatic cell reprogramming.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE7219
NIK/NF-kappaB2 regulated gene products.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This study aims at identifying genes that are NIK/NF-kappaB2 responsive in murine dendritic cells matured in vivo.

Publication Title

Dendritic cells require the NF-kappaB2 pathway for cross-presentation of soluble antigens.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE94624
Colon epithelial cells gene expression data of Sphingomyelin synthase 2 knockout colitis mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

Sphingomyelin synthase (SMS) 2 is the synthetic enzyme of sphingomyelin (SM), which regulates the fluidity and microdomain structure of the plasma membrane. We investigated the effect of SMS2 deficiency on dextran sodium sulfate (DSS)-induced murine colitis, and found suppression of DSS-induced inflammation in SMS2 deficient (SMS2-/-) mice. Results provide insight into the role of SMS2 in inflammation.

Publication Title

Sphingomyelin synthase 2 deficiency inhibits the induction of murine colitis-associated colon cancer.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE39204
Gene-expression profiles of ascites-cytology-positive ovarian cancer
  • organism-icon Homo sapiens
  • sample-icon 61 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Ovarian cancer often progresses by disseminating to the peritoneal cavity, but how the tumor cells evade host immunity during this process is poorly understood. Programmed cell death 1 ligand 1 (PD-L1) is known to suppress immune system and to be an unfavorable prognostic factor in ovarian cancer. The purpose of this study was to elucidate the function of PD-L1 in peritoneal dissemination. Positive cytology in ascites was a significant poor prognostic factor in ovarian cancer. Microarray profiles of cytology-positive cases showed significant correlations with Gene Ontology terms related to immune system process. Microarray and immunohistochemistry in human ovarian cancer revealed significant correlation between PD-L1 expression and positive cytology. PD-L1 expression on mouse ovarian cancer cells was induced upon encountering lymphocytes in the course of peritoneal spread in vivo and upon co-culturing with lymphocytes in vitro. Tumor cell lysis by CTLs was attenuated when PD-L1 was overexpressed and promoted when it was silenced. PD-L1 overexpression also inhibited gathering and degranulation of CTLs. In mouse ovarian cancer dissemination models, depleting PD-L1 expression on tumor cells resulted in inhibited tumor growth in the peritoneal cavity and prolonged survival. Restoring immune function by inhibiting immune-suppressive factors such as PD-L1 may be a promising therapeutic strategy for peritoneal dissemination.

Publication Title

PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE39205
Gene-expression profiles of PD-L1-affected CD8+ T cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Programmed cell death 1 ligand 1 (PD-L1) is known to suppress immune system and to be an unfavorable prognostic factor in ovarian cancer. The purpose of this study was to elucidate the function of PD-L1 in peritoneal dissemination. Tumor cell lysis by CTLs was attenuated when PD-L1 on tumor cells was overexpressed and promoted when it was silenced. PD-L1 overexpression also inhibited gathering and degranulation of CTLs. Gene expression profile of mouse CTLs caused by PD-L1-overexpressing ovarian cancer was related to human CTLs exhaustion. In mouse ovarian cancer dissemination models, depleting PD-L1 expression on tumor cells resulted in inhibited tumor growth in the peritoneal cavity and prolonged survival. Restoring immune function by inhibiting immune-suppressive factors such as PD-L1 may be a promising therapeutic strategy for peritoneal dissemination.

Publication Title

PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE36667
Gene expression profiles of induced pluripotent stem cells from centenarians
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We established induced pluripotent stem cells (iPSC) from centrenarians by retroviral transduction of primary human fibroblasts. To show the similarity between 201B7 iPSC and 100-1 #16 iPSC (induced pluripotent stem cells from centenarian), this experiment was designed.

Publication Title

Establishment of induced pluripotent stem cells from centenarians for neurodegenerative disease research.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE58624
Identification of the possible molecules by which acquired platinum resistance induces EMT-like changes in urothelial carcinoma
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To identify the possible targets in EMT-acquisition after developing acquired platinum resistance in urothelial carcinoma (UC), we examined the changes in global gene expression before and after development of acquired platinum resistance. Comparing two types of acquired platinum resistant UC cells and their corresponding parent cells, in the end we identified 49 genes (25 up-regulated and 24 down-regulated genes) which were commonly changed in two acquired platinum resistant UC cells.

Publication Title

Acquired platinum resistance involves epithelial to mesenchymal transition through ubiquitin ligase FBXO32 dysregulation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40127
GEI-8, a homologue of vertebrate nuclear receptor corepressor NCoR/SMRT, regulates development and neuronal functions in C. elegans.
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

NCoR and SMRT are two paralogous vertebrate proteins that function as corepressors with unliganded nuclear receptors. Although C. elegans has a large number of nuclear receptors, orthologues of the corepressors NCoR and SMRT have not unambiguously been identified in Drosophila or C. elegans. Here, we identify GEI-8 as the closest homologue of NCoR and SMRT in C. elegans and demonstrate that GEI-8 is expressed as at least two isoforms throughout development in multiple tissues, including neurons, muscle and intestinal cells. We demonstrate that a homozygous deletion within the gei-8 coding region, which is predicted to encode a truncated protein lacking the predicted NR domain, results in severe mutant phenotypes with developmental defects, slow movement and growth, arrested gonadogenesis and defects in cholinergic neurotransmission. Whole genome expression analysis by microarrays identified sets of de-regulated genes consistent with both the observed mutant phenotypes and a role of GEI-8 in regulating transcription. Interestingly, the upregulated transcripts included a predicted mitochondrial sulfide:quinine reductase encoded by Y9C9A.16. This locus also contains non-coding, 21-U RNAs of the piRNA. Inhibition of the expression of the region coding for 21-U RNAs leads to irregular gonadogenesis in the homozygous gei-8 mutants, but not in an otherwise wild-type background, suggesting that GEI-8 may function in concert with the 21-U RNAs to regulate gonadogenesis. Our results confirm that GEI-8 is the orthologue of the vertebrate NCoR/SMRT corepressors and demonstrate important roles for this putative transcriptional corepressor in development and neuronal function.

Publication Title

GEI-8, a homologue of vertebrate nuclear receptor corepressor NCoR/SMRT, regulates gonad development and neuronal functions in Caenorhabditis elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22125
Mouse pancreatic islets during pregnancy
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

During pregnancy, pancreatic islets undergo structural and functional changes that lead to enhance insulin release in response to increased insulin demand, which is rapidly reversed at parturition. One of the most important changes is expansion of pancreatic -cell mass mainly by increased proliferation of cells.

Publication Title

Serotonin regulates pancreatic beta cell mass during pregnancy.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE86212
CHARGE syndrome modeling using patient-derived iPSC reveals defective migration of neural crest cells harboring CHD7 mutations
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CHARGE syndrome is caused by heterozygous mutations in a chromatin remodeler CHD7 and characterized by a set of malformations historically postulated to arise from defects in the neural crest formation during embryogenesis. To better delineate neural crest defects in CHARGE syndrome, we generated induced pluripotent stem cells (iPSCs) from two patients with typical syndrome manifestations, and characterized neural crest cells differentiated in vitro from these iPSCs (iPSC-NCCs). We found that expression of genes associated with cell migration was altered in CHARGE iPSC-NCCs as compared to control iPSC-NCCs. Consistently, CHARGE iPSC-NCCs showed defective delamination, migration and motility in vitro, and their transplantation in ovo revealed overall defective migratory activity in the chick embryo. Altogether, our results support the historical inference that CHARGE syndrome patients have defects in neural crest migration and provide the first successful application of patient-derived iPSCs in modeling craniofacial disorders.

Publication Title

CHARGE syndrome modeling using patient-iPSCs reveals defective migration of neural crest cells harboring CHD7 mutations.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact