refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 252 results
Sort by

Filters

Technology

Platform

accession-icon GSE40127
GEI-8, a homologue of vertebrate nuclear receptor corepressor NCoR/SMRT, regulates development and neuronal functions in C. elegans.
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

NCoR and SMRT are two paralogous vertebrate proteins that function as corepressors with unliganded nuclear receptors. Although C. elegans has a large number of nuclear receptors, orthologues of the corepressors NCoR and SMRT have not unambiguously been identified in Drosophila or C. elegans. Here, we identify GEI-8 as the closest homologue of NCoR and SMRT in C. elegans and demonstrate that GEI-8 is expressed as at least two isoforms throughout development in multiple tissues, including neurons, muscle and intestinal cells. We demonstrate that a homozygous deletion within the gei-8 coding region, which is predicted to encode a truncated protein lacking the predicted NR domain, results in severe mutant phenotypes with developmental defects, slow movement and growth, arrested gonadogenesis and defects in cholinergic neurotransmission. Whole genome expression analysis by microarrays identified sets of de-regulated genes consistent with both the observed mutant phenotypes and a role of GEI-8 in regulating transcription. Interestingly, the upregulated transcripts included a predicted mitochondrial sulfide:quinine reductase encoded by Y9C9A.16. This locus also contains non-coding, 21-U RNAs of the piRNA. Inhibition of the expression of the region coding for 21-U RNAs leads to irregular gonadogenesis in the homozygous gei-8 mutants, but not in an otherwise wild-type background, suggesting that GEI-8 may function in concert with the 21-U RNAs to regulate gonadogenesis. Our results confirm that GEI-8 is the orthologue of the vertebrate NCoR/SMRT corepressors and demonstrate important roles for this putative transcriptional corepressor in development and neuronal function.

Publication Title

GEI-8, a homologue of vertebrate nuclear receptor corepressor NCoR/SMRT, regulates gonad development and neuronal functions in Caenorhabditis elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32031
Expression data in C. elegans L2 larvae after nhr-23 inhibition and in controls
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in C. elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical coregulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.

Publication Title

NHR-23 dependent collagen and hedgehog-related genes required for molting.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58350
Human leukocytes from 6 volunteers before and 2h after pectin capsules consumption
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dietary methanol regulates human gene activity.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE58348
Human leukocytes from 6 volunteers before and 2h after pectin capsules consumption (I)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH into toxic formaldehyde (FA). Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and the modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) in volunteers after pectin intake showed various responses for 30 differentially regulated mRNAs. Most of the mRNAs were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes did not show significant change. A qRT-PCR analysis of volunteer WBC after pectin and red wine intake confirmed the complicated dependence between plasma MeOH content and the mRNA accumulation of previously identified genes, namely GAPDH and SNX27, and MME, SORL1, DDIT4, HBA and HBB genes revealed in this study. We hypothesized that human plasma MeOH, which is replenished from endogenous and exogenous sources (diet), has an impact on the WBC mRNA levels of genes involved in AD pathogenesis and signaling.

Publication Title

Dietary methanol regulates human gene activity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE58349
Human leukocytes from 6 volunteers before and 2h after pectin capsules consumption (II)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH into toxic formaldehyde (FA). Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and the modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) in volunteers after pectin intake showed various responses for 30 differentially regulated mRNAs. Most of the mRNAs were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes did not show significant change. A qRT-PCR analysis of volunteer WBC after pectin and red wine intake confirmed the complicated dependence between plasma MeOH content and the mRNA accumulation of previously identified genes, namely GAPDH and SNX27, and MME, SORL1, DDIT4, HBA and HBB genes revealed in this study. We hypothesized that human plasma MeOH, which is replenished from endogenous and exogenous sources (diet), has an impact on the WBC mRNA levels of genes involved in AD pathogenesis and signaling.

Publication Title

Dietary methanol regulates human gene activity.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE58364
Human leukocytes from 6 volunteers before and 2h after pectin capsules consumption (IV)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH into toxic formaldehyde (FA). Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and the modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) in volunteers after pectin intake showed various responses for 30 differentially regulated mRNAs. Most of the mRNAs were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes did not show significant change. A qRT-PCR analysis of volunteer WBC after pectin and red wine intake confirmed the complicated dependence between plasma MeOH content and the mRNA accumulation of previously identified genes, namely GAPDH and SNX27, and MME, SORL1, DDIT4, HBA and HBB genes revealed in this study. We hypothesized that human plasma MeOH, which is replenished from endogenous and exogenous sources (diet), has an impact on the WBC mRNA levels of genes involved in AD pathogenesis and signaling.

Publication Title

Dietary methanol regulates human gene activity.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE70077
RING1 proteins contribute to early proximal-distal specification of the forelimb bud by restricting Meis2 expression
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Polycomb group (PcG) proteins play a pivotal role in silencing developmental genes and help to maintain various stem and precursor cells and regulate their differentiation. PcG factors also regulate dynamic and complex regional specification, particularly in mammals, but this activity is mechanistically not well understood. In this study, we focused on proximal-distal (PD) patterning of the mouse forelimb bud to elucidate how PcG factors contribute to a regional specification process that depends on developmental signals. Depletion of the RING1 proteins RING1A (RING1) and RING1B (RNF2), which are essential components of Polycomb repressive complex 1 (PRC1), led to severe defects in forelimb formation along the PD axis. We show that preferential defects in early distal specification in Ring1A/B-deficient forelimb buds accompany failures in the repression of proximal signal circuitry bound by RING1B, including Meis1/2, and the activation of distal signal circuitry in the prospective distal region. Additional deletion of Meis2 induced partial restoration of the distal gene expression and limb formation seen in the Ring1A/B-deficient mice, suggesting a crucial role for RING1-dependent repression of Meis2 and likely also Meis1 for distal specification. We suggest that the RING1-MEIS1/2 axis is regulated by early PD signals and contributes to the initiation or maintenance of the distal signal circuitry.

Publication Title

RING1 proteins contribute to early proximal-distal specification of the forelimb bud by restricting Meis2 expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70075
RING1 links retinoic acid signaling to the early proximal-distal specification of forelimb bud via Meis2 repression (mRNA)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Polycomb group (PcG) proteins play a pivotal role in silencing of development-related genes and contribute to maintain various stem and precursor cells and regulate their differentiation. However, it is not well understood how PcG factors regulate dynamic and complex morphogenetic processes particularly in mammals. In this study, we focused on proximal-distal (PD) patterning of forelimb bud to elucidate how PcG factors contribute to regulation of morphogenetic processes that depends on developmental signals. Depletion of RING1 proteins, which are common components of both canonical and variant Polycomb repressive complex-1 (PRC1), led to dramatic deficiencies in forelimb formation.

Publication Title

RING1 proteins contribute to early proximal-distal specification of the forelimb bud by restricting Meis2 expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP083308
Gene expression profiles of Hes1 positive retinal subsets
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To analyze Mueller glia specific gene expression, Hes1-promoter-dEGFP mice was used. dEGFP positive and negative retinal fractions were purified by a cell sorter and subjected to RNA-seq Overall design: Examination of mRNA expression patterns in Hes1-positive (Hes1P) retinal cells and Hes1-negative (Hes1N) retinal cells at 2 developmental timepoints.

Publication Title

Analysis of Müller glia specific genes and their histone modification using Hes1-promoter driven EGFP expressing mouse.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE36897
Expression data from mouse neural cells and tumors
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Neural stem cells (NSCs) are considered to be the cell-of-origin of brain tumor stem cells. To identify the genetic pathways responsible for the transformation of normal NSCs to brain-tumor-initiating cells, we used Sleeping Beauty (SB) transposons, to mutagenize NSCs. Mobilized SB transposons induced the immortalization of NSCs. Immortalized NSCs induced tumors upon subcutaneous transplantation in immunocompromized mice. To further classify the immortalized cells and mouse tumors, we performed Gene Set Enrichment Analysis (GSEA) using DNA microarray data.

Publication Title

Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact