refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 86 results
Sort by

Filters

Technology

Platform

accession-icon GSE19460
Cyst formation in the PKD2 (1-703) transgenic rat precedes deregulation of proliferation-related pathways
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Polycystic Kidney Disease is characterized by the formation of large fluid-filled cysts that eventually destroy the renal parenchyma leading to end-stage renal failure. Although remarkable progress has been made in understanding the pathologic mechanism of the disease, the precise orchestration of the early events leading to cyst formation is still unclear. Abnormal cellular proliferation was traditionally considered to be one of the primary irregularities leading to cyst initiation and growth. Consequently, many therapeutic interventions have focused on targeting this abnormal proliferation, and some have even progressed to clinical trials. However, the role of proliferation in cyst development was primarily examined at stages where cysts are already visible in the kidneys and therefore at later stages of disease development. In this study we focused on the cystic phenotype since birth in an attempt to clarify the temporal contribution of cellular proliferation in cyst development. Using a PKD2 transgenic rat model (PKD2 (1-703)) of different ages (0-60 days after birth) we performed gene expression profiling and phenotype analysis by measuring various kidney parameters. Phenotype analysis demonstrated that renal cysts appear immediately after birth in the PKD2 transgenic rat model (PKD2 (1-703)). On the other hand, abnormal proliferation occurs at later stages of the disease as identified by gene expression profiling. Interestingly, other pathways appear to be deregulated at early stages of the disease in this PKD model. Our data suggest that cystogenesis precedes deregulation of proliferation-related pathways, suggesting that proliferation abnormalities may contribute in cyst growth rather than cyst formation.

Publication Title

Cyst formation in the PKD2 (1-703) transgenic rat precedes deregulation of proliferation-related pathways.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE60180
Gene expression profiles of human Ad5- and CMV-specific CD4 T cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Analysis of global gene expression profiles of FACS-sorted, human Ad5- and CMV-specific CD4 T cells from the same PBMC sample of healthy donros, using affymetrix Human Gene 2.0ST Gene-Chips;

Publication Title

Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE11118
Expression data following mitogen stimulation from Jurkat Cell
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression analysis identified 27 of these 744 p300 and pol II associated genes as significantly increased (p 0.05) within the first hour following mitogen stimulation

Publication Title

Dynamic bookmarking of primary response genes by p300 and RNA polymerase II complexes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46860
Alleviation of telomere dysfunction and mitochondria defects of telomerase deficient somatic cells by reprogramming
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs) represent two major approaches for somatic cell reprogramming. However, little attention has been paid to the ability of these two strategies in rejuvenating cells from donors with aging associated syndrome. Here, we utilized telomerase deficient (Terc-/-) mice to probe this question. SCNT-derived embryonic stem cells (ntESCs) and iPSCs were successfully derived from second generation (G2) and third generation (G3) of Terc-/- mice, and ntESCs showed better differentiation potential and self-renewal ability. Telomeres lengthened extensively in cloned embryos while remained or slightly increased in the process of iPSCs induction. Furthermore, G3 ntESCs exhibited improvement of telomere capping function as evidenced by decreased signal free ends and chromosome end-to-end fusion events. In contrast, there was a further decline of telomere capping function in G3 iPSCs. In addition to telomere dysfunction, mitochondria function was severely impaired in G3 iPSCs as evidenced by oxygen consumption rate (OCR) decline, reactive oxygen species (ROS) accumulation and dramatically increased mitochondria genome mutations while these deficiencies were greatly mitigated in G3 ntESCs. Our data proved the principle that SCNT-mediated reprogramming appears more superior than transcription factors induced reprogramming in terms of the resetting of telomere quality and mitochondria function, and thus, providing valuable information for further improvement of transcription factors mediated reprogramming.

Publication Title

Enhanced telomere rejuvenation in pluripotent cells reprogrammed via nuclear transfer relative to induced pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85991
Genome-wide Expression Profiling in pancreatic cancer cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Differential gene expression profiling in KMT2D-depleted MIA PaCa-2 cells was performed using Human Genome U133 Plus 2.0 Array

Publication Title

Lysine methyltransferase 2D regulates pancreatic carcinogenesis through metabolic reprogramming.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP070836
Next Generation Sequencing for Quantitative Analysis of transcriptome of follicular compared to non-follicular CD8 T cells from HIV+ Lymph nodes
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The goal of the study was to characterize the molecular signatures of CD8 T cell subpopulations sorted from HIV+ lymph nodes and HIV- tonsils. We compared the transcriptome profiles of follicular and non -foliccular CD8 T cells (sorted based on the surface expression fo CCR7 and CXCR5, chemokine receptors that govern the intratissue trafficking of T cells). This is the first study addressing this question. We found several genes differentially expressed in these two CD8 T cell populations. Our pathway analysis revealed that several pathways related to costimulation/activation as well as to beta-catenin pathway were differentially expressed in these two CD8 t cell populations too. Overall design: CD8 T cell populations were sorted and whole transcriptome analysis was performed using an Illumina machine

Publication Title

Follicular CD8 T cells accumulate in HIV infection and can kill infected cells in vitro via bispecific antibodies.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP044925
Transcription factor p63 bookmarks genomic loci in epithelial cells and regulates a subset of target genes during epidermal differentiation through dynamic enhancers (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Tightly controlled gene expression orchestrated by the transcription factor p63 during epithelial differentiation is important for development of epithelial-related structures such as epidermis, limb and craniofacial regions. How p63 regulates spatial and temporal expression of its target genes during these developmental processes is however not yet clear. By epigenomics profiling in stem cells established from one of these epithelial structures, the epidermis, we provide a global map of p63-bound regulatory elements that are categorized as single enhancers and clustered enhancers during epidermal differentiation. Transcriptomics analysis shows dynamic gene expression patterns during epidermal differentiation that correlates with the activity of p63-bound enhancers rather than with p63 binding itself. Only a subset of p63-bound enhancers is active in epidermal stem cells, and inactive p63-bound enhancers appear to function in gene regulation during the development of other epithelial tissues. Our data suggest a paradigm that p63 bookmarks genomic loci during the commitment of the epithelial lineage and regulates gene expression in different epithelial tissues through tissue-specific active enhancers. The catalogue of differentially expressed epidermal genes including non-coding RNAs and epithelial enhancers reported here provides a rich resource for studies of epithelial development and related diseases. Overall design: Comparison of gene expression at different stages of keratinocyte differentiation

Publication Title

Genome-wide p63-regulated gene expression in differentiating epidermal keratinocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49577
Chemotherapy induced dynamic gene expression changes in vivo are prognostic in ovarian cancer
  • organism-icon Homo sapiens
  • sample-icon 101 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Carboplatin and paclitaxel are the most widely prescribed chemotherapeutic agents for ovarian cancer. Not all patients respond to treatment, so there is a need for biomarkers that reliably predict resistance in ovarian tumors. Expression of such biomarkers may be dynamically controlled. Gene expression was assessed for a period of 14 days after treatment with carboplatin or combined carboplatin-paclitaxel in xenografts from two ovarian cancer models: chemosensitive serous adenocarcinoma derived OV1002 and slow growing, chemoresistant HOX424 of clear cell origin. Tumour volume reduction was observed in both cell lines post treatment, with a more prominent effect in OV1002, which subsided in late time points. In OV1002, hierarchical clustering classified differentially expressed genes into four time-related patterns, upregulated and downregulated groups for each early and late expressed genes. Upregulated genes were involved in DNA repair, cell cycle and apoptosis, while downregulated groups were involved in oxygen consuming metabolic processes and apoptosis control. Carboplatin-paclitaxel treatment triggered a more comprehensive response. HOX424 responded only to the combined treatment, while the observed reduction in tumour growth was limited. Several apoptosis and cell cycle genes were upregulated, while Wnt signaling was downregulated in the exclusively late expression pattern observed in this cell line. Late downregulated gene groups post carboplatin-taxane treatment were capable of predicting overall survival in two independent clinical datesets. Pathways overrepresented in these clusters were also predictive of outcome. This longitudinal gene expression study may help characterization of chemotherapy response, identification of resistance biomarkers and guiding timing of biopsies.

Publication Title

Chemotherapy-induced dynamic gene expression changes in vivo are prognostic in ovarian cancer.

Sample Metadata Fields

Disease, Disease stage, Time

View Samples
accession-icon GSE7808
Region specific gene expression profiling along the human epididymis
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of the gene expression pattern in the caput, corpus and cauda epididymides of three donors of 26-50 years of age with no medical pathologies that could affect reproductive function. The data generated in this study demonstrate a region specific gene expression pattern along the human epididymis that seems to coincide with the morphological distinctive features of the excurrent duct.

Publication Title

Region-specific gene expression profiling along the human epididymis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE79316
Response to PI3K/mTOR dual inhibition in Glioma initiating cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The PI3K/mammalian target of rapamycin (mTOR) pathway is dysregulated in over 50% of human GBM but remains a challenging clinical target. Inhibitors against PI3K/mTOR mediators have limited clinical efficacy as single agents. Gene expression profiling after PI3K/mTOR inhibition treatment was analyzed by Affymetrix microarrays.

Publication Title

MSK1-Mediated β-Catenin Phosphorylation Confers Resistance to PI3K/mTOR Inhibitors in Glioblastoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact