refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 405 results
Sort by

Filters

Technology

Platform

accession-icon GSE23204
The Role of the Rad4-Rad23 Complex and Rad4 Ubiquitination in UV-Responsive Transcription
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

The Rad23/Rad4 protein complex plays a major role in DNA damage recognition during nucleotide excision repair (NER) in yeast. We recently showed that two distinct pathways contribute to efficient NER in yeast. The first operates independently of de novo protein synthesis and requires a nonproteolytic function of the 19S regulatory complex of the 26S proteasome and Rad23. The second pathway requires de novo protein synthesis, and relies on the activity of a newly identified Rad7-containing E3 ubiquitin ligase that ubiquitinates Rad4 in response to UV. Surprisingly, we found that cells deleted of either Rad23 or Rad4 caused reduced Rad4 and Rad23 mRNA levels respectively. We considered the possibility of an unexpected role of Rad23 and Rad4 in regulating the expression of genes involved in the transcriptional response to DNA damage. Gene expression profiling has suggested that Rad23 and Rad4 may function as a complex to affect transcription of a small subset of genes in response to UV damage. To determine how Rad4 and Rad23 contribute to the regulation of these genes, we have examined the occupancy of Rad4/Rad23 in their promoter regions by chromatin immunoprecipitation (ChIP), both in the presence and absence of UV damage. Our preliminary ChIP data suggests that the Rad4/Rad23 complex regulates a set of genes in response to UV light. We also proposed that the transcriptional regulatory activity of the Rad4-Rad23 complex required Rad4 ubiquitination. These arrays test this theory using the psocs mutant strain, which is unable to facilitate Rad4 ubiquitination after UV irradiation.

Publication Title

UV induced ubiquitination of the yeast Rad4-Rad23 complex promotes survival by regulating cellular dNTP pools.

Sample Metadata Fields

Time

View Samples
accession-icon GSE11871
TheRole of Rad23/Rad4 protein complex in transcription and DNA repair in yeast
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

The Rad23/Rad4 protein complex plays a major role in DNA damage recognition during nucleotide excision repair (NER) in yeast. We recently showed that two distinct pathways contribute to efficient NER in yeast. The first operates independently of de novo protein synthesis and requires a nonproteolytic function of the 19S regulatory complex of the 26S proteasome and Rad23. The second pathway requires de novo protein synthesis, and relies on the activity of a newly identified E3 ubiquitin ligase that ubiquitinates Rad4 in response to UV. Surprisingly, we found that cells deleted of either Rad23 or Rad4 caused reduced Rad4 and Rad23 mRNA levels respectively. We considered the possibility of an unexpected role of Rad23 and Rad4 in regulating the expression of genes involved in the transcriptional response to DNA damage. Gene expression profiling has suggested that Rad23 and Rad4 may function as a complex to affect transcription of a small subset of genes in response to UV damage. To determine how Rad4 and Rad23 contribute to the regulation of these genes, we have examined the occupancy of Rad4/Rad23 in their promoter regions by chromatin immunoprecipitation (ChIP), both in the presence and absence of UV damage. Our preliminary ChIP data suggests that the Rad4/Rad23 complex regulates a set of genes in response to UV light.

Publication Title

UV induced ubiquitination of the yeast Rad4-Rad23 complex promotes survival by regulating cellular dNTP pools.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25905
Expression data from mouse bone marrow adipocytes with age
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The aim of this study was to characterize the age-related gene expression profiles between bone marrow adipocytes and peripheral white adipocytes.

Publication Title

Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE147231
Identification of human cytotoxic ILC3s
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Pico Assay HT (clariomshumanht)

Description

Human ILCs are classically categorized into five subsets; cytotoxic CD127-CD94+ NK cells and non-cytotoxic CD127+CD94-, ILC1s, ILC2s, ILC3s and LTi cells. Here, we identify a novel subset within the CD127+ ILC population, characterized by the expression of the cytotoxic marker CD94. These CD94+ ILCs strongly resemble conventional ILC3s in terms of phenotype, transcriptome and cytokine production, but are highly cytotoxic. IL-15 was unable to induce differentiation of CD94+ ILCs towards mature NK cells. Instead, CD94+ ILCs retained RORγt, CD127 and CD200R expression and produced IL-22 in response to IL-15. Culturing non-cytotoxic CD127+ ILC1s or ILC3s with IL-12 induced upregulation of CD94 and cytotoxic activity, effects that were not observed with IL-15 stimulation. Thus, human helper ILCs can acquire a cytotoxic program without differentiating into NK cells.

Publication Title

Identification of human cytotoxic ILC3s.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE108999
The effect of soluble CD74 (sCD74) and recombinant macrophage migration inhibitory factor (MIF) treatment on the gene expression profile in cardiac myofibroblasts
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

Co-treatment with soluble CD74 and MIF induced necroptosis in cardiac myofibroblasts. The underlying mechanism of sCD74/MIF-induced necroptosis are still unkown. We used a microarray to identify pathways regulated by co-treatment with sCD74 and MIF .

Publication Title

Soluble CD74 Reroutes MIF/CXCR4/AKT-Mediated Survival of Cardiac Myofibroblasts to Necroptosis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22083
Expression data from human skin exposed to solar-simulated radiation with or without sunscreen
  • organism-icon Homo sapiens
  • sample-icon 98 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Despite widespread use of sunscreens that minimize erythema by blocking ultraviolet B (UVB) radiation, incidence rates of melanoma continue to rise. In considering this disparity between intervention and disease prevalence, we investigated the in vivo transcriptome of human skin treated with sunscreen and solar-simulated radiation (ssR). A focal skin area of healthy participants was exposed to ssR at 1 minimal erythema dose (MED), 0.1 MED or 100 J/m2 with or without prior application of sunscreen, or to non-UVB-spectrum of ssR (solar-simulated UVA/visible/infrared radiation: ssA). Skin biopsies were analyzed using expression microarrays.

Publication Title

Transcriptional signatures of full-spectrum and non-UVB-spectrum solar irradiation in human skin.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP027535
Targeting H3K4 methylation as a therapeutic strategy for Huntington''s disease (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2000

Description

Transcriptional dysregulation is an early feature of Huntington''s disease (HD). We observed gene-specific changes in H3K4me3 at transcriptionally repressed promoters in R6/2 mouse and human HD brain. Genome-wide analysis showed a novel chromatin signature for this mark. Reducing the levels of the H3K4 demethylase SMCX/Jarid1c in primary neurons reversed down-regulation of key neuronal genes caused by mutant Huntingtin (Htt) expression. Finally, reduction of SMCX/Jarid1c in primary neurons from BACHD mice or the single Jarid1 in a Drosophila HD model was protective. Therefore, targeting this epigenetic signature may be an effective strategy to ameliorate the consequences of HD. Overall design: mRNA-seq in wild type and R6/2 cortex and striatum at 8 and 12 weeks.

Publication Title

Targeting H3K4 trimethylation in Huntington disease.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE15617
Uncovering the Arabidopsis thaliana nectary transcriptome: nectary and reference tissues
  • organism-icon Arabidopsis thaliana
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Many flowering plants attract pollinators by offering a reward of floral nectar. Remarkably, the molecular events involved in the development of nectaries, the organs that produce nectar, as well as the synthesis and secretion of nectar itself, are poorly understood. Indeed, to date, no genes have been shown to directly affect the de novo production or quality of floral nectar. To address this gap in knowledge, the ATH1 Affymetrix GeneChip array was used to systematically investigate the Arabidopsis nectary transcriptome to identify genes and pathways potentially involved in nectar production. In this study, we identified a large number of genes differentially expressed between secretory lateral nectaries and non-secretory median nectary tissues, as well as between mature lateral nectaries (post-anthessis) and immature lateral nectary tissue (pre-anthesis).

Publication Title

Uncovering the Arabidopsis thaliana nectary transcriptome: investigation of differential gene expression in floral nectariferous tissues.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15601
Uncovering the Arabidopsis thaliana nectary transcriptome
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Many flowering plants attract pollinators by offering a reward of floral nectar. Remarkably, the molecular events involved in the development of nectaries, the organs that produce nectar, as well as the synthesis and secretion of nectar itself, are poorly understood. Indeed, to date, no genes have been shown to directly affect the de novo production or quality of floral nectar. To address this gap in knowledge, the ATH1 Affymetrix GeneChip array was used to systematically investigate the Arabidopsis nectary transcriptome to identify genes and pathways potentially involved in nectar production. In this study, we identified a large number of genes differentially expressed between secretory lateral nectaries and non-secretory median nectary tissues, as well as between mature lateral nectaries (post-anthessis) and immature lateral nectary tissue (pre-anthesis).

Publication Title

Uncovering the Arabidopsis thaliana nectary transcriptome: investigation of differential gene expression in floral nectariferous tissues.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10516
Identification of genes controlled by LMX1B in the developing mouse hindlimb bud
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A control vs. genetic knockout experiment aimed at determining what RNAs are upregulated or downregulated in e11.5 mouse proximal limb tissue lacking the Lmx1b gene. Because Lmx1b is required for dorsal-ventral patterning of the limb, this screen gives insight into what putative downstream targets of Lmx1b contribute to dorsal-ventral patterning.

Publication Title

Identification of genes controlled by LMX1B in the developing mouse limb bud.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact