refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 511 results
Sort by

Filters

Technology

Platform

accession-icon GSE31356
Microarray expression analysis of patients Dupuytrens contracture (DC)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We used a high-throughput technology, DNA microarray, to screen the entire genome for the changes in gene expression in diseased tissue to characterize Dupuytren's contracture at a molecular level and find genes that are involved in development of the disease.

Publication Title

Microarray analysis of Dupuytren's disease cells: the profibrogenic role of the TGF-β inducible p38 MAPK pathway.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE77628
Pals1 haplo-insufficiency in nephrons results in proteinuria and cyst formation
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Mammalian nephrons are the physiological subunits of mammalian kidneys which consist of different highly apicobasally polarized epithelial cell types. In epithelial cells polarization is controlled by evolutionary conserved CRB, PAR, or SRIB complexes. Here, we focused on the role of Pals1/Mpp5 in the nephron. Pals1, a core component of the apical membrane determining CRB complex, is highly expressed in renal tubular epithelial and glomerular epithelial cells (podocytes). Surprisingly, haplo-deficient mice, lacking one Pals1/Mpp5 allele in the nephron developed a strong phenotype, accompanied by cyst formation and severe renal filtration barrier defects, which subsequently lead to death after 6-8 weeks. Supporting studies in Drosophila nephrocytes, and epithelial cell culture models elucidated the role of Pals1 as a dose dependent upstream regulator of the crosstalk between Hippo- and TGF-signaling during nephrogenesis.

Publication Title

Pals1 Haploinsufficiency Results in Proteinuria and Cyst Formation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35713
Transcriptional Signatures as a Disease-Specific and Predictive Inflammatory Biomarker for Type 1 Diabetes
  • organism-icon Homo sapiens
  • sample-icon 202 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35725
Transcriptional Signatures as a Disease-Specific and Predictive Inflammatory Biomarker for Type 1 Diabetes [T1D_114]
  • organism-icon Homo sapiens
  • sample-icon 114 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we analyzed larger RO T1D and HC cohorts. In addition, we examined T1D progression by looking at longitudinal, pre-onset and longstanding T1D samples.

Publication Title

Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35711
Transcriptional Signatures as a Disease-Specific and Predictive Inflammatory Biomarker for Type 1 Diabetes [CF_S1S3_5Auto_20CF_10HC]
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found between unrelated healthy controls and non-diabetic cystic fibrosis patients possessing Pseudomonas aeruginosa pulmonary tract infection.

Publication Title

Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35716
Transcriptional Signatures as a Disease-Specific and Predictive Inflammatory Biomarker for Type 1 Diabetes [Pneu_S3S24_10Pneu_4HC]
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found between unrelated healthy controls and patients with bacterial pneumonia.

Publication Title

Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35712
Transcriptional Signatures as a Disease-Specific and Predictive Inflammatory Biomarker for Type 1 Diabetes [H1N1_S5_5Pre_5D0]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found in pre H1N1 samples to the signature associated with active H1N1 flu.

Publication Title

Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4069
Downstream targets of Nm23-H1: Gene expression profiling of CAL 27 cells using DNA microarray
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The human nm23-H1 was discovered as a tumor metastasis suppressor based on its reduced expression in melanoma cell lines with low versus high metastatic potential. It encodes for one of two subunits of the nucleoside-diphosphate kinase. Besides its role in the maintenance of the cells NTP pool, nm23 plays a key role in different cellular processes. The role of nm23-H1 in these processes still has to be elucidated. Our goal was to identify Nm23-H1 downstream targets by subjecting Nm23-H1 overexpressing CAL 27 cells oral squamous cell carcinoma (OSSC) to microarray analysis. The genes with changed expression patterns could be clustered into several groups: transforming growth factor (TGF) signaling pathway, cell adhesion, invasion and motility, proteasome machinery, cell-cycle, epithelial structural and related molecules and others. Based on the expression patterns observed we presume that nm23-H1 might have a role in OSSCs, which should be confirmed by future experiments.

Publication Title

Downstream targets of Nm23-H1: gene expression profiling of CAL 27 cells using DNA microarray.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line

View Samples
accession-icon GSE56049
Transcriptional effects of CSB and the CSB-PGBD3 fusion protein in CSB-null UVSS1KO cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cockayne syndrome is a segmental progeria most often caused by mutations in the CSB gene encoding a SWI/SNF-like ATPase required for transcription-coupled DNA repair (TCR). Over 43 Mya before marmosets diverged from humans, a piggyBac3 (PGBD3) transposable element integrated into intron 5 of the CSB gene. As a result, primate CSB genes now generate both CSB protein and a conserved CSB-PGBD3 fusion protein in which the first 5 exons of CSB are alternatively spliced to the PGBD3 transposase. We show by microarray analysis that expression of the fusion protein alone in CSB-null UV-sensitive syndrome cells (UVSS1KO) cells induces an interferon-like response that resembles both the innate antiviral response and the prolonged interferon response normally maintained by unphosphorylated STAT1 (U-STAT1); moreover, as might be expected based on conservation of the fusion protein, this potentially cytotoxic interferon-like response is largely reversed by coexpression of functional CSB protein. Interestingly, expression of CSB and the CSB-PGBD3 fusion protein together, but neither alone, upregulates the insulin growth factor binding protein IGFBP5 and downregulates IGFBP7, suggesting that the fusion protein may also confer a metabolic advantage, perhaps in the presence of DNA damage. Finally, we show that the fusion protein binds in vitro to members of a dispersed family of 900 internally deleted piggyBac elements known as MER85s, providing a potential mechanism by which the fusion protein could exert widespread effects on gene expression. Our data suggest that the CSB-PGBD3 fusion protein is important in both health and disease, and could play a role in Cockayne syndrome.

Publication Title

The conserved Cockayne syndrome B-piggyBac fusion protein (CSB-PGBD3) affects DNA repair and induces both interferon-like and innate antiviral responses in CSB-null cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE40215
shRNA knockdown of the transcription factor NF-YA (NFYA)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

NF-Y, a trimeric transcription factor (TF) composed of two histone-like subunits (NF-YB (NFYB) and NF-YC (NFYC)) and a sequence-specific subunit (NF-YA), binds to the CCAAT motif, a common promoter element. Genome-wide mapping reveals 5,000-15,000 NF-Y binding sites depending on the cell type, with the NF-YA and NF-YB subunits binding asymmetrically with respect to the CCAAT motif. Despite being characterized as a proximal promoter TF, only 25% of NF-Y sites map to promoters. A comparable number of NF-Y sites are located at enhancers, many of which are tissue specific, and nearly half of NF-Y sites are in select subclasses of HERV LTR repeats. Unlike most TFs, NF-Y can access its target DNA motif in inactive (non-modified) or polycomb-repressed chromatin domains. Unexpectedly, NF-Y extensively co-localizes with FOS in all genomic contexts, and at promoters and enhancers this often occurs in the absence of JUN and the AP-1 motif. NF-Y also co-associates with a select cluster of growth-controlling and oncogenic TFs, consistent with the abundance of CCAAT motifs in the promoters of genes overexpressed in cancer. Interestingly, NF-Y and several growth-controlling TFs bind in a stereo-specific manner, suggesting a mechanism for cooperative action at promoters and enhancers. Our results indicate that NF-Y is not merely a commonly-used, proximal promoter TF, but rather performs a more diverse set of biological functions, many of which are likely to involve co-association with FOS.

Publication Title

NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact