refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 328 results
Sort by

Filters

Technology

Platform

accession-icon GSE34517
Cigarette smoking alters mRNA expression in human alveolar macrophages
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Alveolar macrophages from never smokers and active smokers were isolated by bronchoalveolar lavage and gene expression was measured. Chronic cigarette smoke exposure, as occurs in smoker's lungs, leads to significant changes in gene expression. Of note, RNA was isolated immediately following bronchoscopy. Alveolar macrophage levels were >95%.

Publication Title

Cigarette smoking decreases global microRNA expression in human alveolar macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51707
Sex-specific control of CNS autoimmunity by p38 MAPK signaling in myeloid cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Objective: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by a global increasing incidence driven by relapsing-remitting disease in females. p38 MAP kinase (MAPK) has been described as a key regulator of inflammatory responses in autoimmunity, but its role in the sexual dimorphism in MS or MS models remains unexplored. Methods: Toward this end, we used experimental autoimmune encephalomyelitis (EAE), the principal animal model of MS, combined with pharmacologic and genetic inhibition of p38 MAPK activity and transcriptomic analyses. Results: Pharmacologic inhibition of p38 MAPK selectively ameliorated EAE in female mice. Conditional deletion studies demonstrated that p38 signaling in macrophages/myeloid cells, but not T cells or dendritic cells, recapitulated this sexual dimorphism. Analysis of CNS inflammatory infiltrates showed that female, but not male mice lacking p38 in myeloid cells exhibited reduced immune cell activation compared with controls, while peripheral T cell priming was unaffected in both sexes. Transcriptomic analyses of myeloid cells revealed differences in p38-controlled transcripts comprising female- and male-specific gene modules, with greater p38 dependence of pro-inflammatory gene expression in females. Interpretation: Our findings demonstrate a key role for p38 in myeloid cells in CNS autoimmunity and uncover important molecular mechanisms underlying sex differences in disease pathogenesis. Taken together, our results suggest that the p38 MAPK signaling pathway represents a novel target for much needed disease modifying therapies for MS

Publication Title

Sex-specific control of central nervous system autoimmunity by p38 mitogen-activated protein kinase signaling in myeloid cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE47440
The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE47437
Lymph node CD4+ T cell and thioglycollate-elicited peritoneal macrophage expression data from nave young and old SJL/J and SJL-ChrY^B10.S male mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Understanding the DNA elements that constitute and control the regulatory genome is critical for the appropriate therapeutic management of complex diseases. Here, using chromosome Y (ChrY) consomic mouse strains on the C57BL/6J background, we show that susceptibility to two diverse animal models of autoimmune disease, including experimental allergic encephalomyelitis (EAE) and experimental myocarditis, correlates with the natural variation in copy number of Sly and Rbmy multicopy ChrY genes. In the B6 background, ChrY possesses gene regulatory properties that impact both genome-wide gene expression and the presence of alternative splice variants in pathogenic CD4+ T cells. Using a ChrY consomic strain on the SJL background, we discovered a preference for ChrY-mediated gene regulation in macrophages, the immune cell subset underlying the EAE sexual dimorphism in SJL mice, rather than CD4+ T cells. Importantly, in both genetic backgrounds, an inverse correlation exists between the number of Sly and Rbmy ChrY gene copies and the number of significantly upregulated genes in immune cells, thereby supporting a link between copy number variation of Sly and Rbmy with the ChrY genetic element exerting regulatory properties. Moreover, in humans, an analysis of the CD4+ T cell transcriptome from male multiple sclerosis patients versus healthy controls provides further evidence for an evolutionarily conserved mechanism of gene regulation by ChrY. Thus, these data establish ChrY as a member of the regulatory genome in mammals due to its ability to regulate gene expression and alternative splicing in immune cells linked to disease.

Publication Title

The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE47024
Lymph node CD4+ T cell expression data from nave C57BL/6J and C57BL/6J-ChrY^SJL
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Understanding the DNA elements that constitute and control the regulatory genome is critical for the appropriate therapeutic management of complex diseases. Here, using chromosome Y (ChrY) consomic mouse strains on the C57BL/6J background, we show that susceptibility to two diverse animal models of autoimmune disease, including experimental allergic encephalomyelitis (EAE) and experimental myocarditis, correlates with the natural variation in copy number of Sly and Rbmy multicopy ChrY genes. In the B6 background, ChrY possesses gene regulatory properties that impact both genome-wide gene expression and the presence of alternative splice variants in pathogenic CD4+ T cells compared to CD4+ T cells. An inverse correlation exists between the number of Sly and Rbmy ChrY gene copies and the number of significantly upregulated genes in immune cells, thereby supporting a link between copy number variation of Sly and Rbmy and the ChrY genetic element exerting regulatory properties. Thus, these data establish ChrY as a member of the regulatory genome in mammals due to its ability to regulate gene expression and alternative splicing in immune cells linked to disease.

Publication Title

The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE18312
Gene Expression in Blood in Scizophrenia and Bipolar Disorder
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Schizophrenia (SCZ) and bipolar disorder (BPD) are polygenic disorders with many genes contributing to their etiologies. The aim of this investigation was to search for dysregulated molecular and cellular pathways for these disorders as well as psychosis. We conducted a blood-based microarray investigation in two independent samples with SCZ and BPD from San Diego (SCZ=13, BPD=9, control=8) and Taiwan [data not included](SCZ=11, BPD=14, control=16). Diagnostic groups were compared to controls, and subjects with a history of psychosis [PSYCH(+): San Diego (n=6), Taiwan (n=14)] were compared to subjects without such history [PSYCH(-): San Diego (n=11), Taiwan (n=14)]. Analyses of covariance comparing mean expression levels on a gene-by-gene basis were conducted to generate the top 100 significantly dysregulated gene lists for both samples by each diagnostic group. Gene lists were imported into Ingenuity Pathway Analysis (IPA) software. Results showed the ubiquitin proteasome pathway (UPS) was listed in the top ten canonical pathways for BPD and psychosis diagnostic groups across both samples with a considerably low likelihood of a chance occurrence (p = .001). No overlap in dysregulated genes populating these pathways was observed between the two independent samples. Findings provide preliminary evidence of UPS dysregulation in BPD and psychosis as well as support further investigation of the UPS and other molecular and cellular pathways for potential biomarkers for SCZ, BPD, and/or psychosis.

Publication Title

Preliminary evidence of ubiquitin proteasome system dysregulation in schizophrenia and bipolar disorder: convergent pathway analysis findings from two independent samples.

Sample Metadata Fields

Sex, Age, Disease

View Samples
accession-icon GSE44873
Histamine H3 Receptor Integrates Peripheral Inflammatory Signals in the Neurogenic Control of Immune Responses and Autoimmune Disease Susceptibility
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Histamine H3 receptor (Hrh3/H3R) is primarily expressed by neurons in the central nervous system (CNS) where it functions as a presynaptic inhibitory autoreceptor and heteroreceptor. Previously, we identified an H3R-mediated central component in susceptibility to experimental allergic encephalomyelitis (EAE), the principal autoimmune model of multiple sclerosis (MS), related to neurogenic control of blood brain barrier permeability and peripheral T cell effector responses. Furthermore, we identified Hrh3 as a positional candidate for the EAE susceptibility locus Eae8. Here, we characterize Hrh3 polymorphisms between EAE-susceptible and resistant SJL and B10.S mice, respectively, and show that Hrh3 isoform expression in the CNS is differentially regulated by acute peripheral inflammatory stimuli in an allele-specific fashion. Next, we show that Hrh3 is not expressed in any subpopulations of the immune compartment, and that secondary lymphoid tissue is anatomically poised to be regulated by central H3R signaling. Accordingly, using transcriptome analysis, we show that, inflammatory stimuli elicit unique transcriptional profiles in the lymph nodes of H3RKO mice compared to WT mice, which is indicative of negative regulation of peripheral immune responses by central H3R signaling. These results further support a functional link between the neurogenic control of T cell responses and susceptibility to CNS autoimmune disease coincident with acute and/or chronic peripheral inflammation. Pharmacological targeting of H3R may therefore be useful in preventing the development and formation of new lesions in MS, thereby limiting disease progression.

Publication Title

Histamine H(3) receptor integrates peripheral inflammatory signals in the neurogenic control of immune responses and autoimmune disease susceptibility.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27962
Expression data of Sham and post-MI myocardium from swine
  • organism-icon Sus scrofa
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

The molecular mechanism underlying cardiac remodeling following myocardial infarction have been incompletely understood. Until now, most studies have been performed in rodents. We studied cardiac remodeling in the physiologically more relevant animal model, the swine.

Publication Title

Left ventricular remodeling in swine after myocardial infarction: a transcriptional genomics approach.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE47772
Expression data from subpopulations of Apc1638N/+ intestinal adeno tumors versus Apc1638N/+ / KRAS v12G intestinal adenocarcinomas tumors
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Constitutive activation of the Wnt pathway leads to adenoma formation, an obligatory step towards intestinal cancer. In view of the established role of Wnt in regulating stemness, we attempted the isolation of cancer stem cells (CSCs) from Apc- and Apc/KRAS-mutant intestinal tumours. Whereas CSCs are present in malignant Apc/KRASmutant carcinomas, they appear to be very rare (<10-6) in the benign Apcmutant adenomas. In contrast, the Lin-CD24hiCD29+ subpopulation of adenocarcinoma cells appear to be enriched in CSCs with increased levels of active -catenin. Expression profiling analysis of the CSC-enriched subpopulation confirmed their enhanced Wnt activity and revealed additional differential expression of other signalling pathways, growth factor binding proteins, and extracellular matrix components. As expected, genes characteristic of the Paneth cell lineage (e.g. defensins) are co-expressed together with stem cell genes (e.g. Lgr5) within the CSC-enriched subpopulation. This is of interest as it may indicate a cancer stem cell niche role for tumor-derived Paneth-like cells, similar to their role in supporting Lgr5+ stem cells in the normal intestinal crypt. Overall, our results indicate that oncogenic KRAS activation in Apc-driven tumours results in the expansion of the CSCs compartment by increasing b-catenin intracellular stabilization.

Publication Title

Cancer stemness in Apc- vs. Apc/KRAS-driven intestinal tumorigenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47130
Vector-transduced neurons transcriptome profiles
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

With the goal of specifically dissecting the toxicogenomic signatures of the helper-dependent (HD) human (HAd5) and canine (CAV-2) adenovirus, the VSV-G-pseudotyped SIN HIV-1 (LV) and the Adenoviral-associated vector 2/9 for human neurons (AAV2/9), we transduced a bona fide human neuronal system with HD-HAd5, HD-CAV-2, LV and AAV2/9, we analysed the transcriptional response of more than 47,000 transcripts using gene chips.

Publication Title

Differentiated neuroprogenitor cells incubated with human or canine adenovirus, or lentiviral vectors have distinct transcriptome profiles.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact