refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 17 results
Sort by

Filters

Technology

Platform

accession-icon GSE38063
Comparison of the long-term effects of calorie restriction without malnutrition on global gene expression profiles of rat and human skeletal muscle
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip, Illumina Rat Ref-12 v1

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38012
Comparison of the long-term effects of calorie restriction without malnutrition on global gene expression profiles of rat and human skeletal muscle [Human]
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

With the population of older and overweight individuals on the rise in the Western world, there is an ever greater need to slow the aging processes and reduce the burden of age-associated chronic disease that would significantly improve the quality of human life and reduce economic costs. Caloric restriction (CR), is the most robust and reproducible intervention known to delay aging and to improve healthspan and lifespan across species (1); however, whether this intervention can extend lifespan in humans is still unknown. Here we report that rats and humans exhibit similar responses to long-term CR at both the physiological and molecular levels. CR induced broad phenotypic similarities in both species such as reduced body weight, reduced fat mass and increased the ratio of muscle to fat. Likewise, CR evoked similar species-independent responses in the transcriptional profiles of skeletal muscle. This common signature consisted of three key pathways typically associated with improved health and survival: IGF-1/insulin signaling, mitochondrial biogenesis and inflammation. To our knowledge, these are the first results to demonstrate that long-term CR induces a similar transcriptional profile in two very divergent species, suggesting that such similarities may also translate to lifespan-extending effects in humans as is known to occur in rodents. These findings provide insight into the shared molecular mechanisms elicited by CR and highlight promising pathways for therapeutic targets to combat age-related diseases and promote longevity in humans.

Publication Title

Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE95396
Pol II transcription termination in Arabidopsis by the nuclear exoribonuclease XRN3
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Two nuclear 5'-3' exonucleases XRN2/3 in Arabidopsis thaliana are homologs of the yeast and human Rat1/Xrn2, which are involved in degradation and processing of several classes of nuclear RNAs and in transcription termination of RNA polymerase II. Here we show that knockdown of XRN3 leads to altered expression of several hundred of the Arabidopsis genes and accumulation of new non-coding RNAs. Using strand-specific short read sequencing we reveal a widespread accumulation of intergenic transcripts in xrn3 mutants. These non-coding XAT (xrn3-associated transcripts) RNAs are generated by Pol II read-through transcription and are usually polyadenylated and lack the 5' cap structure. We show that XRN3-mediated changes in expression of a subset of genes are related to XAT transcription and may be enhanced by XAT-mRNA chimeras produced in xrn3 plants while antisense XATs may trigger siRNA production. Our results highlight the important role of the Rat1/Xrn2 5'-3' exoribonucleases in the torpedo mechanism of Pol II transcription termination and show that a global disturbance in this process significantly impacts both gene expression and transcriptome integrity.

Publication Title

Defective XRN3-mediated transcription termination in Arabidopsis affects the expression of protein-coding genes.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon SRP058571
Somatic cell fusions reveal extensive heterogeneity in basal-like breast cancer [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrated genetic and epigenetic (DNA methylation and chromatin) profiling. We found that the basal-like trait is generally dominant and it is largely defined by epigenetic repression of luminal transcription factors. Definition of super-enhancers highlighted a core program common in luminal cells but high degree of heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells is sufficient to induce luminal-to-basal phenotypic switch implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required for luminal-basal fusions, and identified EN1, TBX18, and TCF4 as candidate transcriptional regulators of luminal-to-basal switch. Our findings highlight the remarkable epigenetic plasticity of breast cancer cells. Overall design: RNA-Seq in breast cancer cell-lines

Publication Title

Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22298
Human epidermal keratinocytes treated with retinoic acid or thyroid hormone
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Targets of Retinoic Acid (RA) were identified in primary human epidermal keratinocytes grown in the presence or absence of all-trans retinoic acid for 1, 4, 24, 48 and 72 hours. Targets of Thyroid Hormone (T3) were identified in primary human epidermal keratinocytes grown in the presence or absence of the hormone; same controls as for RA.

Publication Title

Retinoid-responsive transcriptional changes in epidermal keratinocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE67761
Genome-wide analysis of RAR transcriptional targets in mouse striatum links retinoic acid signaling with Huntingtons disease and other neurodegenerative disorders
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcriptome analysis of nucleus accumbens shell samples from RAR-null mutant mice and their wild type littermates

Publication Title

Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE103668
Pre-treatment expression data from neoadjuvant platinum & bevacizumab treated triple negative breast cancer patients
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression data from 21 triple negative breast cancer samples treated with cisplatin & bevacizumab in the neoadjuvant setting as part of a clinical trial.

Publication Title

Overexpression of BLM promotes DNA damage and increased sensitivity to platinum salts in triple-negative breast and serous ovarian cancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE3791
Gene Expression Comparison of First Passage vs. Primary Human and Mouse Retinal Sphere Cells
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The pigmented portion of ciliary epithelium in the adult mammalian eye harbors mitotically quiescent retinal sphere cells, which are capable of self-renewal and differentiating into retinal neurons when assayed in vitro; however, very little is known about the molecular mechanism controlling the proliferation and differentiation of these adult retinal stem cells or their molecular resemblance to mutipotent stem/progenitor cells during early eye development. This experiment studies the gene expression of first passage and primary human and mouse retinal sphere cells.

Publication Title

Recent developments in StemBase: a tool to study gene expression in human and murine stem cells.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP127513
Rescue of Fragile X syndrome neurons by DNA methylation editing of the FMR1 gene [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Fragile X syndrome (FXS), the most common genetic form of intellectual disability in male, is caused by silencing of the FMR1 gene by hypermethylation of the CGG expansion mutation in the 5'UTR region of FMR1 in FXS patients. Here, we applied recently developed DNA methylation editing tools to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/sgRNA switched the heterochromatin status of the upstream FMR1 promoter to an active chromatin state restoring a persistent expression of FMR1 in FXS iPSCs. Neurons derived from methylation edited FXS iPSCs rescued the electrophysiological abnormalities and restored a wild-type phenotype upon the mutant neurons. FMR1 expression in edited neurons was maintained in vivo after engrafting into the mouse brain. Finally, demethylation of the CGG repeats in post-mitotic FXS neurons also reactivated FMR1. Our data establish demethylation of the CGG expansion is sufficient for FMR1 reactivation, suggesting potential therapeutic strategies for FXS. Overall design: RNA-seq of FXS iPSC and neurons derived from FXS iPSC infected with lentiviruses expressing dCas9-Tet1-P2A-tBFP (dC-T) and a mCherry-expressing sgRNA targeting CGG repeats.

Publication Title

Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE48573
Identification of gene expression changes induced by ligands for RXR and its partners in differentiating human monocyte-derived dendritic cells
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Differentiating human dendritic cells were stimulated for 12 hours with RXR agonists (LG268, 9CRA, R- and S-9CDHRA) or agonists for RXR partners including GW3965 (LXR/ panagonist), RSG (PPAR agonist), and GW1516 (PPAR agonist) and AM580 (RARa agonist). The gene expression changes were detected globally by Affymetrix Human Genome U133 Plus 2.0 Arrays.

Publication Title

9-cis-13,14-Dihydroretinoic Acid Is an Endogenous Retinoid Acting as RXR Ligand in Mice.

Sample Metadata Fields

Specimen part, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact