refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 27 results
Sort by

Filters

Technology

Platform

accession-icon SRP077940
A metabolic function for phospholipid and histone methylation
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

S-adenosylmethionine (SAM) is the methyl donor for biological methylation modifications that regulate protein and nucleic acid functions. Here we show that methylation of a phospholipid, phosphatidylethanolamine (PE), is the major consumer of SAM in budding yeast. The induction of phospholipid biosynthetic genes is accompanied by induction of the enzyme that hydrolyzes S-adenosylhomocysteine (SAH), a product and inhibitor of methyltransferases. Beyond its function for the synthesis of phosphatidylcholine (PC), the methylation of PE facilitates the turnover of SAM for the synthesis of cysteine and glutathione. Strikingly, cells that lack PE methylation accumulate SAM, which leads to hypermethylation of histones and the major phosphatase PP2A, dependency on cysteine, and sensitivity to oxidative stress. Without PE methylation, particular sites on histones then become methyl sinks to enable the turnover of SAM. These findings reveal an unforeseen metabolic function for phospholipid and histone methylation intrinsic to the life of a cell. Overall design: Two biological replicates of wild type and cho2? cells in YPL media, in SL media after 1 hour and in SL media after 3 hour were collected for sequencing.

Publication Title

A Metabolic Function for Phospholipid and Histone Methylation.

Sample Metadata Fields

Cell line, Subject, Time

View Samples
accession-icon GSE40230
Expression data from primary and secondary CD4 T cell effectors responding towards influenza A virus infection
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

How secondary CD4 T cell effectors, derived from resting memory cells, differ from primary cells, derived from nave precursors, and how such differences impact recall responses to pathogens is unknown.

Publication Title

Memory CD4+ T-cell-mediated protection depends on secondary effectors that are distinct from and superior to primary effectors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP066675
Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis
  • organism-icon Mus musculus
  • sample-icon 93 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report RNA sequencing of single olfactory neurons from mouse olfactory epithelium in developmental progression from progenitors to precursors to immature neurons to mature neurons. Most mature neurons expressed only one of ~ 1000 odorant receptor genes (Olfrs) at high levels, whereas many immature neurons expressed low levels of multiple Olfrs. Overall design: Investigating expression of odorant receptors genes in mouse olfactory sensory neurons during development.

Publication Title

Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE18651
miR-29 targets in human fetal lung fibroblast IMR-90 cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

TGF is one of most intensively studied regulators of extracellular matrix formation, and has been implicated in the development of pulmonary fibrosis in different models. However, little is know about the role of miRNAs in TGF mediated fibrogenic gene regulation. By using miRNA qRT-PCR array, we have identified miRNAs whose expression are regulated by TGF in IMR-90 cells. Among those down-regulated miRNAs are miR-29 family members. Knockdown miR-29 in IMR-90 cells results in up-regulation of a large number of extracellular matrix and fibrogenic genes including family members of collagen, laminin, integrin, ADAM and MMP, many of them are predicted or confirmed miR-29 targets. Hierarchichal clustering analysis of mRNA array data revealed that many extracellular matrix and fibrogenic genes up-regulated by TGF in IMR-90 cells, are also up-regulated in miR-29 KD cells. Moreover, the similar set of extracellular matrix and fibrogenic genes is also significantly up-regulated in bleomycin treated mouse lungs. Together, our data strongly suggest that downstream of the TGF, miR-29 is a master modulator of genes involved in extracellular matrix formation and might play a significant role in pulmonary fibrosis.

Publication Title

miR-29 is a major regulator of genes associated with pulmonary fibrosis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE30244
Expression data from Tnrc6a (GW182) mutant yolk sac
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

GW182 (Tnrc6a) is a key component of RISC (miRNA-Induced Silencing Complex) that plays a critical role in miRNA-mediated gene silencing. Here, we show that GW182 is expressed in the yolk sac endoderm, and that gene-trap disruption of GW182 leads to growth arrest of yolk sac endoderm, impaired hematopoiesis and embryonic lethality.

Publication Title

Trinucleotide repeat containing 6a (Tnrc6a)-mediated microRNA function is required for development of yolk sac endoderm.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60186
Expression data from WT and IL-2 secondary CD4 T cell effectors responding towards infuenza A virus infection
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

How IL-2 produced by secondary CD4 T cell effectors, derived from resting memory cells, impacts memory CD4 T cell function and survival to memory following antigen re-encounter is unknown.

Publication Title

Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE10113
Comparison of gene expression pattern between Wild-type and Hypb knockout embryo yolk sacs
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This study aimed at exploring the physiological function of mammalian HYPB by means of knockout mouse model. Homogenous disruption of mouse Hypb gene leads to embryonic lethality at E10.5-E11.5. Severe vascular defects were observed in the Hypb-/- embryos, yolk sac and placenta.In the mutant embryo and yolk sac, disorganized and abnormally dilated capillaries cannot be remodeled into large blood vessels or intricate networks. Thus, our results suggest that the mammalian HYPB HMT plays an important role in embryonic vascularization.

Publication Title

Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE89634
Expression data from NKG2A/C/E+ and negative CD4 effectors after influenza A infection
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

CD4 T cells can differentiate into a hetergenous population of effector T cells. A population of cytotoxic CD4 T cells can be generated against influenza challenge, however identifying these cells have been challenging. The expression of NKG2A/C/E on CD4 T cells identifies CD4 T cells with cytotoxic potential thus allowing further characterization of this subset of CD4 effector cells.

Publication Title

NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26390
Fibroblast-specific focal adhesion kinase links mechanical force to fibrosis via chemokine-mediated inflammatory pathways
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Hypertrophic scar (HTS) formation is characterized by exuberant fibroproliferation for reasons that remain poorly understood1. One important but often overlooked component of wound repair is mechanical force, which regulates reciprocal cell-matrix interactions through focal adhesion components including focal adhesion kinase (FAK)1,2. Here we report that FAK is activated following cutaneous injury and that this activation is potentiated by mechanical loading. Transgenic mice lacking fibroblast-specific FAK exhibit significantly less fibrosis in a preclinical model of HTS formation. Inflammatory pathways involving monocyte chemoattractant protein-1 (MCP-1), a chemokine highly implicated in human skin fibrosis3, are triggered following FAK activation, mechanistically linking physical force to fibrosis. Further, small molecule inhibition of FAK effectively abrogates fibroproliferative mechanisms in human cells and significantly reduces scar formation in vivo. Collectively, these findings establish a molecular basis for HTS formation based on the mechanical activation of fibroblast-specific FAK and demonstrate the therapeutic potential of targeted mechanomodulatory strategies.

Publication Title

Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE9941
Gene expression profiles after lentiviral transduction
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human mesenchymal stem cells (hMSCs) were transduced using lentivirus containing the the triple fusion reporter gene fluc-mrfp-ttk. Microarray studies of hMSCs after transduction with the triple reporter genes using lentivirus were performed to study the effects of transduction on stem cell properties using an oligonucleotide human microarray. Transduced cells were sorted by FACS. Cells with high and low signals were ftacrtionated, and gene expression profiles were determined.

Publication Title

Transcriptional profiling of human mesenchymal stem cells transduced with reporter genes for imaging.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact