refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 95 results
Sort by

Filters

Technology

Platform

accession-icon GSE84750
Prostate specimens from a clinical trial of genistein supplementation prior to prostatectomy
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Effects of genistein supplementation on genome‑wide DNA methylation and gene expression in patients with localized prostate cancer.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE84748
Genome-wide expression profiling of prostate specimens from a clinical trial of genistein supplementation prior to prostatectomy.
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

To identify molecular effects of genistein on mRNA levels in prostate cancer, we compared gene expression profiles of genistein-treated tumors with placebo-treated samples. There were 628 probes that reached nominally significant p-values. The genes that were differentially expressed between genistein and placebo samples were involved in angiogenesis, apoptosis, epithelial to mesenchymal transition, and tumor progression. Gene enrichment analysis suggested that PTEN and PDGF were activated, while MYC, beta-estradiol, glucocorticoid receptor NR3C1, and interferon-gamma were repressed in response to genistein treatment. These findings highlight the effects of genistein on global changes in gene expression in prostate cancer and its effects on molecular pathways involved in prostate tumorigenesis.

Publication Title

Effects of genistein supplementation on genome‑wide DNA methylation and gene expression in patients with localized prostate cancer.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP033119
Transcriptome-wide mapping of human Staufen1 binding sites
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Purpose: We performed RNA-Immunoprecipitation in Tandem (RIPiT) experiments against human Staufen1 (Stau1) to identify its precise RNA binding sites in a transcriptome-wide manner. To monitor the consequences of Stau1 binding in terms of target mRNA levels and ribosome occupancy, we modified the levels of endogenous Stau1 in cells by siRNA or overexpression and performed RNA-sequencing and ribosome-footprinting experiments. Staufen1 (Stau1) is a double-stranded RNA (dsRNA) binding protein implicated in mRNA transport, regulation of translation, mRNA decay and stress granule homeostasis. Here we combined RNA-Immunoprecipitation in Tandem (RIPiT) with RNase footprinting, formaldehyde crosslinking, sonication-mediated RNA fragmentation and deep sequencing to map Staufen1 binding sites transcriptome-wide. We find that Stau1 binds complex secondary structures containing multiple short helices, many of which are formed by inverted Alu elements in annotated 3''UTRs or in "strongly distal" 3''UTRs extending far beyond the canonical polyadenylation signal. Stau1 also interacts with both actively translating ribosomes and with mRNA coding sequences (CDS) and 3''UTRs in proportion to their GC-content and internal secondary structure-forming propensity. On mRNAs with high CDS GC-content, higher Stau1 levels lead to greater ribosome densities, suggesting a general role for Stau1 in modulating the ability of ribosomes to elongate through secondary structures located in CDS regions. Overall design: We used HEK293 cells expressing near endogenous levels of wild-type Flag-Stau1 (65KDa isoform with an N-Terminal Flag tag). As a control we used a mutant version of Stau1 that is not functional for dsRNA binding. Formaldehyde crosslinking experiments and RNase footprinting experiments were done in two biological replicates. All RNASeq, Ribosome footprinting and PAS-Seq were done in two biological replicates.

Publication Title

Staufen1 senses overall transcript secondary structure to regulate translation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056835
Novel Observations from Next Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Understanding distinct gene expression patterns of normal adult and developing fetal human pancreatic a and b cells is crucial for developing stem cell therapies, islet regeneration strategies, and therapies designed to increase b cell function in patients with diabetes (type 1 or 2). Toward that end, we have developed methods to highly purify a, b, and d cells from human fetal and adult pancreata by intracellular staining for the cell-specific hormone content, sorting the sub-populations by flow cytometry and, using next generation RNA sequencing, we report on the detailed transcriptomes of fetal and adult a and b cells. We observed that human islet composition was not influenced by age, gender, or body mass index and transcripts for inflammatory gene products were noted in fetal b cells. In addition, within highly purified adult glucagon-expressing a cells, we observed surprisingly high insulin mRNA expression, but not insulin protein expression. This transcriptome analysis from highly purified islet a and b cell subsets from fetal and adult pancreata offers clear implications for strategies that seek to increase insulin expression in type 1 and type 2 diabetes. Overall design: RNA-sequencing of highly purified human adult and fetal islet cell subset was performed using our newly developed method. Using this data, we can study and compare the detailed transcriptome or alpha and beta cells during development.

Publication Title

Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP079916
Ebola virus glycoprotein variant with increased infectivity for human cells dominated the 2013-2016 outbreak
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The unprecedented magnitude of the 2013-2016 Makona Ebola virus (M-EBOV) epidemic likely resulted from multiple epidemiologic factors that set it apart from previous outbreaks. Nonetheless, genetic adaptations that distinguish M-EBOV from previous isolates may also have contributed to the scale of the epidemic. Of particular interest is a M-EBOV glycoprotein (GP) variant, GP-A82V, that was first detected at the inflection point of the 2013-2016 outbreak - when the number of cases increased exponentially - and which completely supplanted the earlier M-EBOV sequence. We found that, as compared with the earlier strain, GP-A82V increased the ability of M-EBOV to fuse with and infect cells of primate origin, including human blood dendritic cells, without altering innate immune signaling in target cells. Residue 82 is located at the NPC1-binding site on M-EBOV GP and the increased infectivity of GP-A82V was restricted to cells from species in which the NPC1 orthologue bears primate-defining residues at the critical interface. We utilized HIV-derived lentiviral vectors pseudotyped with founder and A82V containing M-EBOV GPs to explore the potential that this modification alters how human monocyte-derived dendritic cells (MDDCs) respond to EBOV GP stimulation. Overall design: We generated stocks of lentiviral vector bearing one the following three M-EBOV GPs: founder, A82V, and A82V/T230A. These viral stocks were used to challenge MDDCs from two healthy, anonymous human donors. Stimulated MDDCs were harvested at 1, 2, 4, and 6 hours after viral addition. Gene expression in M-EBOV GP challenged MDDCs was compared to a unstimulated control.

Publication Title

Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP067241
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals (IVF)
  • organism-icon Mus musculus
  • sample-icon 280 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Parental dietary conditions can influence the metabolic traits of offspring. In mice, paternal consumption of low protein diet alters cholesterol and lipid metabolism of progeny. Here, we examine RNA species expressed in male reproductive tissues of mice. Protein restriction leads to altered levels of multiple small RNAs in mature sperm, as well as throughout the male reproductive tract, with decreased levels of let-7 family members and increased levels of 5’ fragments of tRNA-Gly isoacceptors. Intriguingly, tRNA fragments are scarce in the testis, but their levels increase in sperm during post-testicular maturation in the epididymis. We find that epididymosomes – extracellular vesicles which fuse with sperm during epididymal transit – exhibit RNA payloads closely matching those of mature sperm, and can deliver tRNA fragments to immature sperm in vitro both in mouse and in bull. Finally, we show that tRNA-Gly-GCC fragments play a role in repressing genes associated with the endogenous retroelement MERVL, both in ES cells and in preimplantation embryos. Our results shed light on small RNA biogenesis during post-testicular sperm maturation, and link tRNA fragments to regulation of endogenous retroelements active in the early embryo. Overall design: IVF was carried out using oocytes from females fed Control diet (C) and sperm from males fed Control diet or Low Protein diet (LP). Zygotes were then developed 2 cell (2C), 4 cell (4C), 8 cell (8C), Morula (M) or Blastocyst (B) embryonic developmental stages when single embryo RNA seq was carried out to study gene expression changes.

Publication Title

Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP067082
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals (single embryo)
  • organism-icon Mus musculus
  • sample-icon 187 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Parental dietary conditions can influence the metabolic traits of offspring. In mice, paternal consumption of low protein diet alters cholesterol and lipid metabolism of progeny. Here, we examine RNA species expressed in male reproductive tissues of mice. Protein restriction leads to altered levels of multiple small RNAs in mature sperm, as well as throughout the male reproductive tract, with decreased levels of let-7 family members and increased levels of 5’ fragments of tRNA-Gly isoacceptors. Intriguingly, tRNA fragments are scarce in the testis, but their levels increase in sperm during post-testicular maturation in the epididymis. We find that epididymosomes – extracellular vesicles which fuse with sperm during epididymal transit – exhibit RNA payloads closely matching those of mature sperm, and can deliver tRNA fragments to immature sperm in vitro both in mouse and in bull. Finally, we show that tRNA-Gly-GCC fragments play a role in repressing genes associated with the endogenous retroelement MERVL, both in ES cells and in preimplantation embryos. Our results shed light on small RNA biogenesis during post-testicular sperm maturation, and link tRNA fragments to regulation of endogenous retroelements active in the early embryo. Overall design: Zygotes were generated by IVF from animals fed a control diet. These embryos were then microinjected with various combinations of small RNAs and control RNA (HIS3.3::GFP). Follwoing injections the zygotes were developed and allowed to develop until 2 cell (2C) or 4 cell (4C) stage when single embryo RNA seq was carried out to study gene expression changes

Publication Title

Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP067085
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals (ICSI)
  • organism-icon Mus musculus
  • sample-icon 103 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Parental dietary conditions can influence the metabolic traits of offspring. In mice, paternal consumption of low protein diet alters cholesterol and lipid metabolism of progeny. Here, we examine RNA species expressed in male reproductive tissues of mice. Protein restriction leads to altered levels of multiple small RNAs in mature sperm, as well as throughout the male reproductive tract, with decreased levels of let-7 family members and increased levels of 5’ fragments of tRNA-Gly isoacceptors. Intriguingly, tRNA fragments are scarce in the testis, but their levels increase in sperm during post-testicular maturation in the epididymis. We find that epididymosomes – extracellular vesicles which fuse with sperm during epididymal transit – exhibit RNA payloads closely matching those of mature sperm, and can deliver tRNA fragments to immature sperm in vitro both in mouse and in bull. Finally, we show that tRNA-Gly-GCC fragments play a role in repressing genes associated with the endogenous retroelement MERVL, both in ES cells and in preimplantation embryos. Our results shed light on small RNA biogenesis during post-testicular sperm maturation, and link tRNA fragments to regulation of endogenous retroelements active in the early embryo. Overall design: Zygotes were generated by ICSI from oocytes/females fed a Control diet and sperm/males fed either a Control or Low Protein diet. The sperm was isolated from either the Rete testis or the Cauda epididymis and injected either as a whole sperm or just the sperm head. Following fertilization by ICSI the zygotes developed for 28 hours (2C stage) and were harvested for single-embryo RNA-Seq.

Publication Title

Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE13298
Rb1 deficient Apc1638N cecal tumors vs duodenal tumors
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

To examine the role of Rb1 in gastrointestinal (GI) tumors we generated mice with an Apc1638N allele, Rbtm2brn floxed alleles, and a villlin-cre transgene (RBVCA). These mice had reduced median survival due to an increase in tumor incidence and multiplicity in the cecum and the proximal colon; they differed from murine intestinal tumors of the Apc1638N type which normally arise solely in the small intestine. We have examined by micro-array analysis three cecal tumors from these mice (probable adenomas), and compared them to three duodenal tumors (probable adenocarcinomas). Expression profiles of duodenal and cecal tumors relative to each other show unique gene subsets up and down regulated. The two tumor types were subsequently shown to differentially regulate distinct sets of genes over expressed in a majority of human colorectal carcinomas.

Publication Title

Loss of Rb1 in the gastrointestinal tract of Apc1638N mice promotes tumors of the cecum and proximal colon.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19069
Molecular signatures in peripheral T-cell lymphoma (PTCL)
  • organism-icon Homo sapiens
  • sample-icon 147 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Molecular signatures to improve diagnosis in PTCL and prognostication in angioimmunoblastic T-cell lymphoma (AITL). Gene expression profiling of PTCL patient samples was performed to investigate whether molecular signatures can be used to identify distinct entities of PTCL.

Publication Title

Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact