refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 95 results
Sort by

Filters

Technology

Platform

accession-icon GSE28130
Regulatory T cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Induced and activated regulatory CD4+ Foxp3+ cells compared

Publication Title

Connexin 43 signaling enhances the generation of Foxp3+ regulatory T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11775
Foxp3-deficient Treg cells do not revert into conventional Effector CD4+ T cells but constitute a unique cell subset
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gene expression profiles were compared between regulatory T cells (Treg) and Effector CD4+ T cells in healthy B6 mice and sick mice with scurfy mutation.

Publication Title

Foxp3-deficient regulatory T cells do not revert into conventional effector CD4+ T cells but constitute a unique cell subset.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE13298
Rb1 deficient Apc1638N cecal tumors vs duodenal tumors
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

To examine the role of Rb1 in gastrointestinal (GI) tumors we generated mice with an Apc1638N allele, Rbtm2brn floxed alleles, and a villlin-cre transgene (RBVCA). These mice had reduced median survival due to an increase in tumor incidence and multiplicity in the cecum and the proximal colon; they differed from murine intestinal tumors of the Apc1638N type which normally arise solely in the small intestine. We have examined by micro-array analysis three cecal tumors from these mice (probable adenomas), and compared them to three duodenal tumors (probable adenocarcinomas). Expression profiles of duodenal and cecal tumors relative to each other show unique gene subsets up and down regulated. The two tumor types were subsequently shown to differentially regulate distinct sets of genes over expressed in a majority of human colorectal carcinomas.

Publication Title

Loss of Rb1 in the gastrointestinal tract of Apc1638N mice promotes tumors of the cecum and proximal colon.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42641
A Top-down Systems Analysis Identifies an Innate Feed-forward Inflammatory Circuit Leading to Lethal Influenza Infection
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE42639
Transcriptomic comparison of 5 cell types during lethal and non-lethal influenza infection
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Transcriptomic comparison of 5 cell types during lethal and non-lethal influenza infection and further use of these signatures in a top-down systems analysis investigating the relative pathogenic contributions of direct viral damage to lung epithelium vs. dysregulated immunity during lethal influenza infection.

Publication Title

A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE14753
Mammary tumors from K14-cre; ApcCKO/+ mice vs control mammary glands
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Many components of Wnt/-catenin signaling pathway also play critical roles in mammary tumor development. To study the role of Apc in mammary tumorigensis, we introduced conditional Apc mutations specifically into two different mammary epithelial populations using K14-Cre (progenitor) and WAP-cre (lactaing luminal) transgenic mice. Only the K14-cre mediated Apc heterozygosity developed mammary adenocarcinomas demonstrating histological and molecular heterogeneity, suggesting the progenitor cell origin of these tumors. These tumors harbored truncation mutation in a very defined region in the remaining wild-type allele of Apc that would retain some down-regulating activity of -catenin signaling. Our results suggest that not only the epithelial origin but also a certain Apc mutations are selected to achieve a specific level of -catenin signaling optimal for mammary tumor development.

Publication Title

Genetic mechanisms in Apc-mediated mammary tumorigenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29281
Single Cell based genomewide gene expression analysis of murine bone-marrow derived Very Small Embryonic-Like Stem Cells (VSELs)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Recently, we identified a population of Oct4+Sca-1+Lin-CD45- very small embryonic-like stem-cells (VSELs) in adult tissues. Open chromatin structure of pluripotency genes and genomic imprinting-related epigenetic mechanisms maintain pluripotency and quiescence of VSELs, respectively. However, global transcriptome signature of this rare stem-cell population remains elusive. Here, we demonstrate by genomewide gene-expression analysis with a small number of highly purified murine bone-marrow (BM)-derived VSELs, that Oct4+ VSELs i) express a similar, yet nonidentical, transcriptome as embryonic stem-cells (ESCs), ii) up-regulate cell-cycle checkpoint genes, iii) down-regulate genes involved in protein turnover and mitogenic pathways, and iv) highly express Ezh2, a polycomb group protein.

Publication Title

Global gene expression analysis of very small embryonic-like stem cells reveals that the Ezh2-dependent bivalent domain mechanism contributes to their pluripotent state.

Sample Metadata Fields

Age, Specimen part, Cell line

View Samples
accession-icon GSE84750
Prostate specimens from a clinical trial of genistein supplementation prior to prostatectomy
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Effects of genistein supplementation on genome‑wide DNA methylation and gene expression in patients with localized prostate cancer.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE84748
Genome-wide expression profiling of prostate specimens from a clinical trial of genistein supplementation prior to prostatectomy.
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

To identify molecular effects of genistein on mRNA levels in prostate cancer, we compared gene expression profiles of genistein-treated tumors with placebo-treated samples. There were 628 probes that reached nominally significant p-values. The genes that were differentially expressed between genistein and placebo samples were involved in angiogenesis, apoptosis, epithelial to mesenchymal transition, and tumor progression. Gene enrichment analysis suggested that PTEN and PDGF were activated, while MYC, beta-estradiol, glucocorticoid receptor NR3C1, and interferon-gamma were repressed in response to genistein treatment. These findings highlight the effects of genistein on global changes in gene expression in prostate cancer and its effects on molecular pathways involved in prostate tumorigenesis.

Publication Title

Effects of genistein supplementation on genome‑wide DNA methylation and gene expression in patients with localized prostate cancer.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE43956
Induction of pathogenic Th17 cells by salt inducible kinase SGK-1 (SGK-1 KO)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Th17 cells are highly proinflammatory cells that are critical for clearing extracellular pathogens like fungal infections and for induction of multiple autoimmune diseases1. IL-23 plays a critical role in stabilizing and endowing Th17 cells with pathogenic effector functions2. Previous studies have shown that IL-23 signaling reinforces the Th17 phenotype by increasing expression of IL-23 receptor (IL-23R)3. However, the precise molecular mechanism by which IL-23 sustains the Th17 response and induces pathogenic effector functions has not been elucidated. Here, we used unbiased transcriptional profiling of developing Th17 cells to construct a model of their signaling network and identify major nodes that regulate Th17 development. We identified serum glucocorticoid kinase-1 (SGK1), as an essential node downstream of IL-23 signaling, critical for regulating IL-23R expression and for stabilizing the Th17 cell phenotype by deactivation of Foxo1, a direct repressor of IL-23R expression. A serine-threonine kinase homologous to AKT4, SGK1 has been associated with cell cycle and apoptosis, and has been shown to govern Na+ transport and homeostasis5, 6 7, 8. We here show that a modest increase in salt (NaCl) concentration induces SGK1 expression, promotes IL-23R expression and enhances Th17 cell differentiation in vitro and in vivo, ultimately accelerating the development of autoimmunity. The loss of SGK1 resulted in abrogation of Na+-mediated Th17 differentiation in an IL-23-dependent manner. These data indicate that SGK1 is a critical regulator for the induction of pathogenic Th17 cells and provides a molecular insight by which an environmental factor such as a high salt diet could trigger Th17 development and promote tissue inflammation.

Publication Title

Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact