refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 66 results
Sort by

Filters

Technology

Platform

accession-icon GSE106076
ZFN engineered hiPSC with the FTDP-17 associated MAPT IVS10+16 mutation w/wo additional P301S mutation and comparison of FTDP-17 IVS10+16 patient derived hiPSC and ZFN engineered hiPSC
  • organism-icon Homo sapiens
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE104013
ZFN engineered hiPSC with the FTDP-17 associated MAPT IVS10+16 mutation w/wo additional P301S mutation
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

The development of an effective therapy against tauopathies like Alzheimers disease (AD) and frontotemporal dementia (FTD) remains challenging, partly due to limited access to fresh brain tissue, the lack of translational in vitro disease models and the fact that underlying molecular pathways remain to be deciphered. Several genes play an important role in the pathogenesis of AD and FTD, one of them being the MAPT gene encoding the microtubule-associated protein tau. Over the past few years, it has been shown that induced pluripotent stem cells (iPSC) can be used to model various human disorders and can serve as translational in vitro tools. Therefore, we generated iPSC harboring the pathogenic FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) associated mutations IVS10+16 with and without P301S in MAPT using Zinc Finger Nuclease technology. Whole transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential and aberrant WNT signaling. Notably, all phenotypes were recapitulated using patient-derived neurons. Finally, an additional P301S mutation causes an increased calcium bursting frequency, reduced lysosomal acidity and tau oligomerization.

Publication Title

Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE106075
Comparison of FTDP-17 IVS10+16 patient derived hiPSC and ZFN engineered hiPSC
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

The development of an effective therapy against tauopathies like Alzheimers disease (AD) and frontotemporal dementia (FTD) remains challenging, partly due to limited access to fresh brain tissue, the lack of translational in vitro disease models and the fact that underlying molecular pathways remain to be deciphered. Several genes play an important role in the pathogenesis of AD and FTD, one of them being the MAPT gene encoding the microtubule-associated protein tau. Over the past few years, it has been shown that induced pluripotent stem cells (iPSC) can be used to model various human disorders and can serve as translational in vitro tools. Therefore, we generated iPSC harboring the pathogenic FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) associated mutations IVS10+16 with and without P301S in MAPT using Zinc Finger Nuclease technology. Whole transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential and aberrant WNT signaling. Notably, all phenotypes were recapitulated using patient-derived neurons. Finally, an additional P301S mutation causes an increased calcium bursting frequency, reduced lysosomal acidity and tau oligomerization.

Publication Title

Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE50532
Gene expression analysis of RB1 knockdown in bone in response to radiation
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The role of RB1 in response to radiation was examined in human osteoblasts. We demonstrate that RB1 induced SASP genes, a response which was attenuated in RB1 knockdown osteoblasts.

Publication Title

Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP059610
GATA1-deficient dendritic cells display impaired CCL21-dependent migration towards lymph nodes due to reduced levels of polysialic acid
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Dendritic cells (DCs) play a pivotal role in the regulation of the immune response. DC development and activation is finely orchestrated through transcriptional programs. GATA1 transcription factor is required for murine DC development and data suggests that it might be involved in the fine-tuning of the life span and function of activated DCs. We generated DC-specific Gata1 knockout mice (Gata1-KODC), which presented a 20% reduction of splenic DCs, partially explained by enhanced apoptosis. RNA-Seq analysis revealed a number of deregulated genes involved in cell survival, migration and function. DC migration towards peripheral lymph nodes was impaired in Gata1-KODC mice. Migration assays performed in vitro showed that this defect was selective for CCL21, but not CCL19. Interestingly, we show that Gata1-KODC DCs have reduced polysialic acid levels on their surface, which is a known determinant for the proper migration of DCs towards CCL21. Overall design: Dendritic cells from Gata1 knock-out or wild-type mice were stimulated with LPS of unstimulated (under steady state), 2 biological replicates each

Publication Title

GATA1-Deficient Dendritic Cells Display Impaired CCL21-Dependent Migration toward Lymph Nodes Due to Reduced Levels of Polysialic Acid.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-ATMX-4
Transcription profiling of wild type and JMT over-expressing Arabidopsis plants
  • organism-icon Arabidopsis thaliana
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis Genome Array (ag)

Description

Effect of JMT overexpression in global gene expression

Publication Title

Complement analysis of xeroderma pigmentosum variants.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE72829
Diagnosis of childhood bacterial and viral infection using host RNA expression
  • organism-icon Homo sapiens
  • sample-icon 202 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina HumanRef-8 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE72809
Diagnosis of childhood bacterial and viral infection using host RNA expression [Discovery set]
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina HumanRef-8 v3.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE72810
Diagnosis of childhood bacterial and viral infection using host RNA expression [validation set]
  • organism-icon Homo sapiens
  • sample-icon 146 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE80412
Diagnosis of childhood bacterial and viral infection using host RNA expression - Inflammatory validation cohort
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact