refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 324 results
Sort by

Filters

Technology

Platform

accession-icon GSE103059
IRF1 is a transcriptional regulator of ZBP1 promoting NLRP3 inflammasome activation and cell death during influenza virus infection
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Innate immune sensing of influenza A virus (IAV) induces activation of various immune effector mechanisms including the NLRP3 inflammasome and programmed cell death pathways. Although type I IFNs are identified as key mediators of inflammatory and cell death responses during IAV infection, the involvement of various IFN-regulated effectors in facilitating these responses are less studied. Here, we demonstrate the role of interferon regulatory factor 1 (IRF1) in promoting NLRP3 inflammasome activation and cell death during IAV infection. IRF1 functions as a transcriptional regulator of Z-DNA binding protein 1 (ZBP1, also called as DLM1/DAI), a key molecule mediating IAV-induced inflammatory and cell death responses. Therefore, our study identified IRF1 as an upstream regulator of NLRP3 inflammasome and cell death during IAV infection and further highlights the complex and multilayered regulation of key molecules controlling inflammatory response and cell fate decisions during infections.

Publication Title

IRF1 Is a Transcriptional Regulator of ZBP1 Promoting NLRP3 Inflammasome Activation and Cell Death during Influenza Virus Infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48338
Tpl2 promotes chemokine/chemokine receptor expression and macrophage migration during acute inflammation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In autoimmune diseases, accumulation of activated leukocytes correlates with inflammation and disease progression, and therefore, disruption of leukocyte trafficking is an active area of research. The protein kinase Tpl2 (MAP3K8) regulates leukocyte inflammatory responses and is also being investigated for therapeutic inhibition during autoimmunity. Herein, we addressed the contribution of Tpl2 to the regulation of macrophage chemokine and chemokine receptor expression and subsequent migration in vivo using a mouse model of Tpl2 ablation. We found that gene expression of the chemokine ligands CCL2, CCL7, CXCL2, and CXCL3 as well as the chemokine receptors CCR1 and CCR5 were reduced in macrophages from the bone marrow and peritoneal cavities of tpl2-/- mice following stimulation with LPS. LPS stimulation repressed chemokine receptor expression of CCR1, CCR2 and CCR5. Notably, LPS-induced repression of CCR1 and CCR5 was significantly enhanced in Tpl2-deficient macrophages and was observed to be dependent upon Erk activation and independent of PI3K and mTOR signaling. Consistent with alterations in chemokine and chemokine receptor expression, tpl2-/- macrophages were defective in trafficking to the peritoneal cavity following thioglycollate-induced inflammation. Overall, this study demonstrates a Tpl2-dependent mechanism for macrophage expression of both chemokine receptors and their ligands and provides further insight into how Tpl2 inhibition may disrupt inflammatory networks in vivo.

Publication Title

Tumor progression locus 2 (Tpl2) kinase promotes chemokine receptor expression and macrophage migration during acute inflammation.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE6631
Expression data from head and neck squamous cell carcinoma
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Forty-four paired (from the same patient) samples of head and neck squamous cell carcinoma (HNSCC) and normal tissue were studied with Affymetrix U95A chips. A stringent multi-test approach, combining 7 traditional and microarray-specific statistical tests, was used to analyze the resultant data. Candidate genes were assigned to tiers of significance based on the number of statistical tests that each gene satisfied. Representative genes (both up-regulated and down-regulated) from each of the 3 tiers would be quantified with RT-PCR on both microarray-tested and new samples of HNSCC.

Publication Title

Selection and validation of differentially expressed genes in head and neck cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11927
RCV02 (cadA deficient) v wild-type enterohemorrhagic E. coli (EHEC)
  • organism-icon Escherichia coli
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Adherence of pathogenic Escherichia coli strains to intestinal epithelia is essential for infection. For enterohemorrhagic E. coli (EHEC) serotype O157:H7, we have previously demonstrated that multiple factors govern this pathogens adherence to HeLa cells (39). One of these factors is CadA, a lysine decarboxylase, and this protein has been proposed to negatively regulate virulence in several enteric pathogens. In the case of EHEC strains, CadA modulates expression of the intimin, an outer membrane adhesin involved in pathogenesis. Here, we experimentally inactivated cadA in O157:H7 strain 86-24 to investigate the role of this gene in EHEC adhesion to tissue culture monolayers, global gene expression patterns, and colonization of the infant rabbit intestine. As expected, the cadA mutant did not possess lysine decarboxylation activity and was hyper-adherent to tissue-culture cells. Adherence of the cadA mutant was nearly 2-fold greater than that of the wt and complementation of the cadA defect reduced adherence back to wt levels. Furthermore, the cadA mutant affected the expression of intimin protein. Disruption of the eae gene (encoding the intimin protein) in the cadA mutant significantly reduced its adherence to tissue-culture cells. However, adherence of the cadA eae double mutant was greater than that of an 86-24 eae mutant, suggesting that the enhanced adherence of the cadA mutant is not entirely attributable to enhanced expression of intimin in this background. Gene array analysis revealed that the cadA mutation significantly altered EHEC gene expression patterns; expression of 1332 genes was down-regulated and 132 genes up-regulated in the mutant compared to the wild type strain. Interestingly, the gene expression variation shows an EHEC-biased gene alteration including intergenic regions. Two putative adhesins: flagella and F9 fimbriae were up-regulated in the cadA mutant, suggestive of their association with adherence in absence of the Cad regulatory mechanism. Remarkably, in the infant rabbit model, the cadA mutant out-competed the wild type strain in the ileum but not in the cecum or mid-colon, raising the possibility that CadA negatively regulates EHEC pathogenicity in a tissue-specific fashion.

Publication Title

CadA negatively regulates Escherichia coli O157:H7 adherence and intestinal colonization.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP032173
Expression of ATHB17 in Maize Increases Ear Weight at Silking
  • organism-icon Zea mays
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transformation of the Arabidopsis ATHB17 gene into maize results in the expression of a truncated protein (smaller by 113 amino acids) that functions as a dominant-negative regulator that can modify activity of endogenous maize HD-Zip II transcription factors. This RNASeq experiment indicates that the observed effects of ATHB17d113 on the maize ear inflorescence and ear transcriptome are very small. Expression of ATHB17delta113 protein in maize leads to changes in ear growth resulting in increased ear size at early reproductive stages and, potentially increased sink size. Overall design: Two ATHB17delta113 expressing events (Event 1 and Event 2) were compared to control plants (herein referred to as WT) in the context of Monsanto Elite Maize hybrid line NN6306. Three bioreps of both Ear inflorescence and Ear tissues were sampled for the WT and each of the two transgenic events.

Publication Title

Expression of a truncated ATHB17 protein in maize increases ear weight at silking.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE19618
Expression data from E10.5 mouse otocyst
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We established a novel EGFP reporter mouse line (named Tg(ETAR-EGFP)14Imeg), which enables the placode-derived inner ear sensory cell lineage to be visualized and monitored. At E10.5, EGFP expression was detected in the ventral and dorsomedial region of the otocyst.

Publication Title

Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12720
Unique early gene expression patterns in adult to adult living donor liver grafts compared to deceased donor grafts
  • organism-icon Homo sapiens
  • sample-icon 61 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Because of inherent differences between deceased donor (DD) and living donor (LD) liver grafts, we hypothesize that the molecular signatures will be unique, correlating with specific biologic pathways and clinical patterns. Following reperfusion, 579 genes in DD grafts and 1324 genes in LDs were differentially expressed (p<0.005). Many up-regulated LD genes were related to regeneration, biosynthesis and cell cycle, and a large number of down-regulated genes were linked to hepatic metabolism and energy pathways correlating with post-transplant clinical laboratory findings. There was significant up-regulation of inflammatory/immune genes in both DD and LD, each with a distinct pattern. Gene expression patterns of select genes associated with inflammation and regeneration in LD and DD grafts correlated with protein expression.

Publication Title

Unique early gene expression patterns in human adult-to-adult living donor liver grafts compared to deceased donor grafts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1727
Isolation and angiogenesis by endothelial progenitors in the fetal liver
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

While others have reported that fetal liver contains a population of endothelial progenitors based on expression of cell surface markers or culture assays, this is the first proof of a CD31+Sca1+ progenitor by demonstrating highly efficient in vivo angiogenesis and a direct connection to the host vasculature. We have developed a novel isolation method based on collagenase digestion and culture on a fetal liver-derived feeder layer and demonstrate that the feeder cells or their supernatants are required for endothelial progenitor survival and proliferation. Proteogenomic profiling of the endothelial progenitors and the feeder cells was done with tandem mass spectrometry proteomics using MudPIT and gene transcript expression profiling using high density DNA microarrays. This approach identified a number of gene transcripts, proteins and candidate growth factor pathways that are likely to be involved in endothelial progenitor growth, differentiation and angiogenesis.

Publication Title

Isolation and angiogenesis by endothelial progenitors in the fetal liver.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE67784
A Gene Expression-based Blood Diagnostic for Symptomatic Transthyretin Amyloidosis Revealing Male and Female-specific Signatures
  • organism-icon Homo sapiens
  • sample-icon 308 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Early diagnosis of transthyretin (TTR) amyloid diseases remains challenging because of variable disease penetrance. Currently, patients must have an amyloid positive tissue biopsy to be eligible for disease modifying therapies. Early diagnosis is often difficult because the patient exhibits apparent symptoms of polyneuropathy or cardiomyopathy, but has a negative amyloid biopsy. Thus, there is a pressing need for more objective, quantitative diagnostics and biomarkers of TTR-aggregation-associated polyneuropathy and cardiomyopathy. This is especially true in the context of clinical trials demonstrating significant disease modifying effects, e.g. when the TTR tetramer stabilizer tafamidis was administered to familial amyloid polyneuropathy (FAP) patients early in the disease course. When asked if the findings of the tafamidis registration trial were sufficiently robust to provide substantial evidence of efficacy for a surrogate endpoint that is reasonably likely to predict a clinical benefit the advisory committee said yes, but the FDA rejected the tetramer stabilization surrogate biomarker required for orphan tafamidis approvalhence, acceptable biomarkers are badly needed. Herein, we explored whether peripheral blood cell mRNA expression profiles could differentiate symptomatic from asymptomatic V30M FAP patients, and if such a profile would normalize upon tafamidis treatment. We demonstrate that blood cell gene expression patterns reveal sex-independent as well as male and female specific inflammatory signatures in symptomatic FAP patients, but not in asymptomatic carriers, that normalize in FAP patients 6 months after tafamidis treatment. Thus these signatures have potential both as an early diagnostic and as a surrogate biomarker for measuring response to treatment in FAP patients.

Publication Title

Peripheral Blood Cell Gene Expression Diagnostic for Identifying Symptomatic Transthyretin Amyloidosis Patients: Male and Female Specific Signatures.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE6497
Expression profile of syngeneic (sTX) and allogeneic kidney (aTX) transplantation compared to control (ctr) kidneys
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Microarray analyses provide a powerful approach to identify gene expression alterations following kidney transplantation. However, the heterogeneity of human kidney transplant specimens and the variation in sample preparation precludes conclusions regarding the underlying mechanisms of the observed alterations. We used a well defined experimental rat kidney transplantation model with consistent transplant and sample preparation procedures to analyze genome wide changes in gene expression after syngeneic (sTX) and allogeneic transplantation (aTX) four days after transplantation. Both interventions were associated with dramatic changes in gene expression. Genes and Pathways related to immune response were extremely up regulated after aTX. Several of the up regulated genes have been described by other groups and we are able to proof this in one study. But several genes are reported for the first time to be up regulated in expression after renal aTX. The function of these genes in acute rejection process has to be evaluated. On the other hand the up regulation of regulatory or protective genes indicates that regulatory mechanism are activated after aTX trying to down regulate the immune response or protect the tissue against the immune system. The study is capable to serve as a representative study in aTX mediated gene expression by covering the known transcriptional changes reported by other groups and identification of novel markers and pathways. Further analysis of the duplicated datasets by other groups can help for a better understanding of the mechanisms mediated by acute rejection and thereby increase the therapeutic threatment.

Publication Title

Activation of counter-regulatory mechanisms in a rat renal acute rejection model.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact